Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14178


Agonist antibody to MuSK protects mice from MuSK myasthenia gravis

Oury, Julien; Gamallo-Lana, Begona; Santana, Leah; Steyaert, Christophe; Vergoossen, Dana L E; Mar, Adam C; Vankerckhoven, Bernhardt; Silence, Karen; Vanhauwaert, Roeland; Huijbers, Maartje G; Burden, Steven J
Myasthenia gravis (MG) is a chronic and severe disease of the skeletal neuromuscular junction (NMJ) in which the effects of neurotransmitters are attenuated, leading to muscle weakness. In the most common forms of autoimmune MG, antibodies attack components of the postsynaptic membrane, including the acetylcholine receptor (AChR) or muscle-specific kinase (MuSK). MuSK, a master regulator of NMJ development, associates with the low-density lipoprotein-related receptor 4 (Lrp4) to form the signaling receptor for neuronal Agrin, a nerve-derived synaptic organizer. Pathogenic antibodies to MuSK interfere with binding between MuSK and Lrp4, inhibiting the differentiation and maintenance of the NMJ. MuSK MG can be debilitating and refractory to treatments that are effective for AChR MG. We show here that recombinant antibodies, derived from MuSK MG patients, cause severe neuromuscular disease in mice. The disease can be prevented by a MuSK agonist antibody, presented either prophylactically or after disease onset. These findings suggest a therapeutic alternative to generalized immunosuppression for treating MuSK MG by selectively and directly targeting the disease mechanism.
PMCID:11441477
PMID: 39288173
ISSN: 1091-6490
CID: 5714062

Structural insights into the diversity and DNA cleavage mechanism of Fanzor

Xu, Peiyu; Saito, Makoto; Faure, Guilhem; Maguire, Samantha; Chau-Duy-Tam Vo, Samuel; Wilkinson, Max E; Kuang, Huihui; Wang, Bing; Rice, William J; Macrae, Rhiannon K; Zhang, Feng
Fanzor (Fz) is an ωRNA-guided endonuclease extensively found throughout the eukaryotic domain with unique gene editing potential. Here, we describe the structures of Fzs from three different organisms. We find that Fzs share a common ωRNA interaction interface, regardless of the length of the ωRNA, which varies considerably across species. The analysis also reveals Fz's mode of DNA recognition and unwinding capabilities as well as the presence of a non-canonical catalytic site. The structures demonstrate how protein conformations of Fz shift to allow the binding of double-stranded DNA to the active site within the R-loop. Mechanistically, examination of structures in different states shows that the conformation of the lid loop on the RuvC domain is controlled by the formation of the guide/DNA heteroduplex, regulating the activation of nuclease and DNA double-stranded displacement at the single cleavage site. Our findings clarify the mechanism of Fz, establishing a foundation for engineering efforts.
PMCID:11423790
PMID: 39208796
ISSN: 1097-4172
CID: 5719322

β2 integrins impose a mechanical checkpoint on macrophage phagocytosis

Settle, Alexander H; Winer, Benjamin Y; de Jesus, Miguel M; Seeman, Lauren; Wang, Zhaoquan; Chan, Eric; Romin, Yevgeniy; Li, Zhuoning; Miele, Matthew M; Hendrickson, Ronald C; Vorselen, Daan; Perry, Justin S A; Huse, Morgan
Phagocytosis is an intensely physical process that depends on the mechanical properties of both the phagocytic cell and its chosen target. Here, we employed differentially deformable hydrogel microparticles to examine the role of cargo rigidity in the regulation of phagocytosis by macrophages. Whereas stiff cargos elicited canonical phagocytic cup formation and rapid engulfment, soft cargos induced an architecturally distinct response, characterized by filamentous actin protrusions at the center of the contact site, slower cup advancement, and frequent phagocytic stalling. Using phosphoproteomics, we identified β2 integrins as critical mediators of this mechanically regulated phagocytic switch. Macrophages lacking β2 integrins or their downstream effectors, Talin1 and Vinculin, exhibited specific defects in phagocytic cup architecture and selective suppression of stiff cargo uptake. We conclude that integrin signaling serves as a mechanical checkpoint during phagocytosis to pair cargo rigidity to the appropriate mode of engulfment.
PMCID:11411054
PMID: 39294148
ISSN: 2041-1723
CID: 5933462

ARGX-119 is an agonist antibody for human MuSK that reverses disease relapse in a mouse model of congenital myasthenic syndrome

Vanhauwaert, Roeland; Oury, Julien; Vankerckhoven, Bernhardt; Steyaert, Christophe; Jensen, Stine Marie; Vergoossen, Dana L E; Kneip, Christa; Santana, Leah; Lim, Jamie L; Plomp, Jaap J; Augustinus, Roy; Koide, Shohei; Blanchetot, Christophe; Ulrichts, Peter; Huijbers, Maartje G; Silence, Karen; Burden, Steven J
Muscle-specific kinase (MuSK) is essential for the formation, function, and preservation of neuromuscular synapses. Activation of MuSK by a MuSK agonist antibody may stabilize or improve the function of the neuromuscular junction (NMJ) in patients with disorders of the NMJ, such as congenital myasthenia (CM). Here, we generated and characterized ARGX-119, a first-in-class humanized agonist monoclonal antibody specific for MuSK, that is being developed for treatment of patients with neuromuscular diseases. We performed in vitro ligand-binding assays to show that ARGX-119 binds with high affinity to the Frizzled-like domain of human, nonhuman primate, rat, and mouse MuSK, without off-target binding, making it suitable for clinical development. Within the Fc region, ARGX-119 harbors L234A and L235A mutations to diminish potential immune-activating effector functions. Its mode of action is to activate MuSK, without interfering with its natural ligand neural Agrin, and cluster acetylcholine receptors in a dose-dependent manner, thereby stabilizing neuromuscular function. In a mouse model of DOK7 CM, ARGX-119 prevented early postnatal lethality and reversed disease relapse in adult Dok7 CM mice by restoring neuromuscular function and reducing muscle weakness and fatigability in a dose-dependent manner. Pharmacokinetic studies in nonhuman primates, rats, and mice revealed a nonlinear PK behavior of ARGX-119, indicative of target-mediated drug disposition and in vivo target engagement. On the basis of this proof-of-concept study, ARGX-119 has the potential to alleviate neuromuscular diseases hallmarked by impaired neuromuscular synaptic function, warranting further clinical development.
PMID: 39292800
ISSN: 1946-6242
CID: 5721242

Boosting the toolbox for live imaging of translation

Bellec, Maëlle; Chen, Ruoyu; Dhayni, Jana; Trullo, Antonello; Avinens, Damien; Karaki, Hussein; Mazzarda, Flavia; Lenden-Hasse, Helene; Favard, Cyril; Lehmann, Ruth; Bertrand, Edouard; Lagha, Mounia; Dufourt, Jeremy
Live imaging of translation based on tag recognition by a single-chain antibody is a powerful technique to assess translation regulation in living cells. However, this approach is challenging and requires optimization in terms of expression level and detection sensitivity of the system, especially in a multicellular organism. Here, we improved existing fluorescent tools and developed new ones to image and quantify nascent translation in the living Drosophila embryo and in mammalian cells. We tested and characterized five different green fluorescent protein variants fused to the single-chain fragment variable (scFv) and uncovered photobleaching, aggregation, and intensity disparities. Using different strengths of germline and somatic drivers, we determined that the availability of the scFv is critical in order to detect translation throughout development. We introduced a new translation imaging method based on a nanobody/tag system named ALFA-array, allowing the sensitive and simultaneous detection of the translation of several distinct mRNA species. Finally, we developed a largely improved RNA imaging system based on an MCP-tdStaygold fusion.
PMCID:11404453
PMID: 39060168
ISSN: 1469-9001
CID: 5713952

Autophagy-lysosomal-associated neuronal death in neurodegenerative disease

Nixon, Ralph A
Autophagy, the major lysosomal pathway for degrading damaged or obsolete constituents, protects neurons by eliminating toxic organelles and peptides, restoring nutrient and energy homeostasis, and inhibiting apoptosis. These functions are especially vital in neurons, which are postmitotic and must survive for many decades while confronting mounting challenges of cell aging. Autophagy failure, especially related to the declining lysosomal ("phagy") functions, heightens the neuron's vulnerability to genetic and environmental factors underlying Alzheimer's disease (AD) and other late-age onset neurodegenerative diseases. Components of the global autophagy-lysosomal pathway and the closely integrated endolysosomal system are increasingly implicated as primary targets of these disorders. In AD, an imbalance between heightened autophagy induction and diminished lysosomal function in highly vulnerable pyramidal neuron populations yields an intracellular lysosomal build-up of undegraded substrates, including APP-βCTF, an inhibitor of lysosomal acidification, and membrane-damaging Aβ peptide. In the most compromised of these neurons, β-amyloid accumulates intraneuronally in plaque-like aggregates that become extracellular senile plaques when these neurons die, reflecting an "inside-out" origin of amyloid plaques seen in human AD brain and in mouse models of AD pathology. In this review, the author describes the importance of lysosomal-dependent neuronal cell death in AD associated with uniquely extreme autophagy pathology (PANTHOS) which is described as triggered by lysosomal membrane permeability during the earliest "intraneuronal" stage of AD. Effectors of other cell death cascades, notably calcium-activated calpains and protein kinases, contribute to lysosomal injury that induces leakage of cathepsins and activation of additional death cascades. Subsequent events in AD, such as microglial invasion and neuroinflammation, induce further cytotoxicity. In major neurodegenerative disease models, neuronal death and ensuing neuropathologies are substantially remediable by reversing underlying primary lysosomal deficits, thus implicating lysosomal failure and autophagy dysfunction as primary triggers of lysosomal-dependent cell death and AD pathogenesis and as promising therapeutic targets.
PMID: 39259382
ISSN: 1432-0533
CID: 5690402

Numerical model for electrogenic transport by the ATP-dependent potassium pump KdpFABC

Hussein, Adel; Zhang, Xihui; Stokes, David L
In vitro assays of ion transport are an essential tool for understanding molecular mechanisms associated with ATP-dependent pumps. Because ion transport is generally electrogenic, principles of electrophysiology are applicable, but conventional tools like patch-clamp are ineffective due to relatively low turnover rates of the pumps. Instead, assays have been developed to measure either voltage or current generated by transport activity of a population of molecules either in cell-derived membrane fragments or after reconstituting purified protein into proteoliposomes. In order to understand the nuances of these assays and to characterize effects of various operational parameters, we have developed a numerical model to simulate data produced by two relevant assays: fluorescence from voltage-sensitive dyes and current recorded by capacitive coupling on solid supported membranes. Parameters of the model, which has been implemented in Python, are described along with underlying principles of the computational algorithm. Experimental data from KdpFABC, a K+ pump associated with P-type ATPases, are presented, and model parameters have been adjusted to mimic these data. In addition, effects of key parameters such as nonselective leak conductance and turnover rate are demonstrated. Finally, simulated data are used to illustrate the effects of capacitive coupling on measured current and to compare alternative methods for quantification of raw data.
PMCID:11304011
PMID: 38950825
ISSN: 2667-0747
CID: 5689652

Progranulin mediates the onset of pristane induced systemic lupus erythematosus

He, Michun; Hettinghouse, Aubryanna; Bi, Yufei; Chen, Yuehong; Liu, Chuanju
BACKGROUNDS/BACKGROUND:Progranulin (PGRN) is a growth factor-like molecule with diverse roles in homeostatic and pathogenic processes including the control of immune and inflammatory responses. Pathogenic inflammation is a hallmark of systemic lupus erythematosus (SLE) and elevated serum levels of PGRN has been evaluated as a biomarker of disease activity in SLE. However, the role of PGRN in SLE has not been fully investigated. This study is aimed to determine the potential involvements of PGRN in SLE. METHODS:) C57BL/6 mice received intraperitoneal injection of pristane for induction of a murine model of SLE. Sera were collected every biweekly and levels of anti-dsDNA antibody, IgG, and inflammatory factors were measured. Mice were sacrificed 5 months later and the renal lesions, as well as the proportions of T cell subtypes in the spleen were analyzed. RESULTS:mouse kidneys had less IgG and collagen deposition compared with WT mice after pristane injection. CONCLUSION/CONCLUSIONS:The results indicate that PGRN participates in inflammatory response and renal damage in pristane induced SLE models, suggesting that PGRN mediates the onset of SLE.
PMID: 39252120
ISSN: 2523-3106
CID: 5690112

Characterization of tumor heterogeneity through segmentation-free representation learning

Tan, Jimin; Le, Hortense; Deng, Jiehui; Liu, Yingzhuo; Hao, Yuan; Hollenberg, Michelle; Liu, Wenke; Wang, Joshua M; Xia, Bo; Ramaswami, Sitharam; Mezzano, Valeria; Loomis, Cynthia; Murrell, Nina; Moreira, Andre L; Cho, Kyunghyun; Pass, Harvey; Wong, Kwok-Kin; Ban, Yi; Neel, Benjamin G; Tsirigos, Aristotelis; Fenyö, David
The interaction between tumors and their microenvironment is complex and heterogeneous. Recent developments in high-dimensional multiplexed imaging have revealed the spatial organization of tumor tissues at the molecular level. However, the discovery and thorough characterization of the tumor microenvironment (TME) remains challenging due to the scale and complexity of the images. Here, we propose a self-supervised representation learning framework, CANVAS, that enables discovery of novel types of TMEs. CANVAS is a vision transformer that directly takes high-dimensional multiplexed images and is trained using self-supervised masked image modeling. In contrast to traditional spatial analysis approaches which rely on cell segmentations, CANVAS is segmentation-free, utilizes pixel-level information, and retains local morphology and biomarker distribution information. This approach allows the model to distinguish subtle morphological differences, leading to precise separation and characterization of distinct TME signatures. We applied CANVAS to a lung tumor dataset and identified and validated a monocytic signature that is associated with poor prognosis.
PMID: 39282296
ISSN: 2692-8205
CID: 5958172

Discovery of a novel inhibitor of macropinocytosis with antiviral activity

Porebski, Bartlomiej; Christ, Wanda; Corman, Alba; Haraldsson, Martin; Barz, Myriam; Lidemalm, Louise; Häggblad, Maria; Ilmain, Juliana; Wright, Shane C; Murga, Matilde; Schlegel, Jan; Jarvius, Malin; Lapins, Maris; Sezgin, Erdinc; Bhabha, Gira; Lauschke, Volker M; Carreras-Puigvert, Jordi; Lafarga, Miguel; Klingström, Jonas; Hühn, Daniela; Fernandez-Capetillo, Oscar
Several viruses hijack various forms of endocytosis in order to infect host cells. Here, we report the discovery of a molecule with antiviral properties that we named virapinib, which limits viral entry by macropinocytosis. The identification of virapinib derives from a chemical screen using high-throughput microscopy, where we identified chemical entities capable of preventing infection with a pseudotype virus expressing the spike (S) protein from SARS-CoV-2. Subsequent experiments confirmed the capacity of virapinib to inhibit infection by SARS-CoV-2, as well as by additional viruses, such as mpox virus and TBEV. Mechanistic analyses revealed that the compound inhibited macropinocytosis, limiting this entry route for the viruses. Importantly, virapinib has no significant toxicity to host cells. In summary, we present the discovery of a molecule that inhibits macropinocytosis, thereby limiting the infectivity of viruses that use this entry route such as SARS-CoV2.
PMID: 38956870
ISSN: 1525-0024
CID: 5687122