Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14186


Mass Spectrometric Evidence for Neuropeptide-Amidating Enzymes inC. elegans

Van Bael, Sven; Watteyne, Jan; Boonen, Kurt; De Haes, Wouter; Menschaert, Gerben; Ringstad, Niels; Horvitz, H Robert; Schoofs, Liliane; Husson, Steven; Temmerman, Liesbet
Neuropeptides constitute a vast and functionally diverse family of neurochemical signaling molecules, and are widely involved in the regulation of various physiological processes. The nematode C. elegans is well-suited for the study of neuropeptide biochemistry and function, as neuropeptide biosynthesis enzymes are not essential for C. elegans viability. This permits the study of neuropeptide biosynthesis in mutants lacking certain neuropeptide-processing enzymes. Mass spectrometry has been used to study the effects of proprotein convertase and carboxypeptidase mutations on proteolytic processing of neuropeptide precursors and on the peptidome in C. elegans. However, the enzymes required for the last step in the production of many bioactive peptides - the carboxyterminal amidation reaction - have not been characterized in this manner. Here, we describe three genes that encode homologs of neuropeptide amidation enzymes in C. elegans and used tandem LC-MS to compare neuropeptides in wild-type animals with those in newly generated mutants for these putative amidation enzymes. We report that mutants lacking both a functional peptidylglycine α-hydroxylating monooxygenase (PHM) and a peptidylglycine α-amidating monooxygenase (PAM) had a severely altered neuropeptide profile and also a decreased number of offspring. Interestingly, single mutants of the amidation enzymes still expressed some fully processed amidated neuropeptides, indicating the existence of a redundant amidation mechanism in C. elegans. All MS data is available via ProteomeXchange with identifier PXD008942. In summary, the key steps in neuropeptide-processing in C. elegans seem to be executed by redundant enzymes, and loss of these enzymes severely affects brood size, supporting the need of amidated peptides for C. elegans reproduction.
PMCID:5912480
PMID: 29487130
ISSN: 1083-351x
CID: 2965892

Retraction Notice to: The Unfolded Protein Response Element IRE1α Senses Bacterial Proteins Invading the ER to Activate RIG-I and Innate Immune Signaling [Retraction]

Cho, Jin A; Lee, Ann-Hwee; Platzer, Barbara; Cross, Benedict C S; Gardner, Brooke M; De Luca, Heidi; Luong, Phi; Harding, Heather P; Glimcher, Laurie H; Walter, Peter; Fiebiger, Edda; Ron, David; Kagan, Jonathan C; Lencer, Wayne I
PMCID:5916756
PMID: 29649448
ISSN: 1934-6069
CID: 3058842

Substantial Decrease in Plasmalogen in the Heart Associated with Tafazzin Deficiency

Kimura, Tomohiro; Kimura, Atsuko K; Ren, Mindong; Berno, Bob; Xu, Yang; Schlame, Michael; Epand, Richard M
Tafazzin is the mitochondrial enzyme that catalyzes transacylation between a phospholipid and a lysophospholipid in remodeling. Mutations in tafazzin cause Barth syndrome, a potentially life-threatening disease with the major symptom being cardiomyopathy. In the tafazzin-deficient heart, cardiolipin (CL) acyl chains become abnormally heterogeneous unlike those in the normal heart with a single dominant linoleoyl species, tetralinoleoyl CL. In addition, the amount of CL decreases and monolysocardiolipin (MLCL) accumulates. Here we determine using high-resolution 31P nuclear magnetic resonance with cryoprobe technology the fundamental phospholipid composition, including the major but oxidation-labile plasmalogens, in the tafazzin-knockdown (TAZ-KD) mouse heart as a model of Barth syndrome. In addition to confirming a lower level of CL (6.4 ± 0.1 → 2.0 ± 0.4 mol % of the total phospholipid) and accumulation of MLCL (not detected → 3.3 ± 0.5 mol %) in the TAZ-KD, we found a substantial reduction in the level of plasmenylcholine (30.8 ± 2.8 → 18.1 ± 3.1 mol %), the most abundant phospholipid in the control wild type. A quantitative Western blot revealed that while the level of peroxisomes, where early steps of plasmalogen synthesis take place, was normal in the TAZ-KD model, expression of Far1 as a rate-determining enzyme in plasmalogen synthesis was dramatically upregulated by 8.3 (±1.6)-fold to accelerate the synthesis in response to the reduced level of plasmalogen. We confirmed lyso-plasmenylcholine or plasmenylcholine is a substrate of purified tafazzin for transacylation with CL or MLCL, respectively. Our results suggest that plasmenylcholine, abundant in linoleoyl species, is important in remodeling CL in the heart. Tafazzin deficiency thus has a major impact on the cardiac plasmenylcholine level and thereby its functions.
PMCID:5893435
PMID: 29557170
ISSN: 1520-4995
CID: 3044482

Cell cycle heterogeneity directs the timing of neural stem cell activation from quiescence

Otsuki, L; Brand, A H
Quiescent stem cells in adult tissues can be activated for homeostasis or repair. Neural stem cells (NSCs) in Drosophila are reactivated from quiescence in response to nutrition by the insulin signaling pathway. It is widely accepted that quiescent stem cells are arrested in G0 In this study, however, we demonstrate that quiescent NSCs (qNSCs) are arrested in either G2 or G0 G2-G0 heterogeneity directs NSC behavior: G2 qNSCs reactivate before G0 qNSCs. In addition, we show that the evolutionarily conserved pseudokinase Tribbles (Trbl) induces G2 NSCs to enter quiescence by promoting degradation of Cdc25String and that it subsequently maintains quiescence by inhibiting Akt activation. Insulin signaling overrides repression of Akt and silences trbl transcription, allowing NSCs to exit quiescence. Our results have implications for identifying and manipulating quiescent stem cells for regenerative purposes.
PMCID:6538531
PMID: 29622651
ISSN: 1095-9203
CID: 5595932

LTBP3 Pathogenic Variants Predispose Individuals to Thoracic Aortic Aneurysms and Dissections

Guo, Dong-Chuan; Regalado, Ellen S; Pinard, Amelie; Chen, Jiyuan; Lee, Kwanghyuk; Rigelsky, Christina; Zilberberg, Lior; Hostetler, Ellen M; Aldred, Micheala; Wallace, Stephanie E; Prakash, Siddharth K; Leal, Suzanne M; Bamshad, Michael J; Nickerson, Deborah A; Natowicz, Marvin; Rifkin, Daniel B; Milewicz, Dianna M
The major diseases affecting the thoracic aorta are aneurysms and acute dissections, and pathogenic variants in 11 genes are confirmed to lead to heritable thoracic aortic disease. However, many families in which multiple members have thoracic aortic disease do not have alterations in the known aortopathy genes. Genes highly expressed in the aorta were assessed for rare variants in exome sequencing data from such families, and compound rare heterozygous variants (p.Pro45Argfs∗25 and p.Glu750∗) in LTBP3 were identified in affected members of one family. A homozygous variant (p.Asn678_Gly681delinsThrCys) that introduces an additional cysteine into an epidermal growth factor (EGF)-like domain in the corresponding protein, latent TGF-β binding protein (LTBP-3), was identified in a second family. Individuals with compound heterozygous or homozygous variants in these families have aneurysms and dissections of the thoracic aorta, as well as aneurysms of the abdominal aorta and other arteries, along with dental abnormalities and short stature. Heterozygous carriers of the p.Asn678_Gly681delinsThrCys variant have later onset of thoracic aortic disease, as well as dental abnormalities. In these families, LTBP3 variants segregated with thoracic aortic disease with a combined LOD score of 3.9. Additionally, heterozygous rare LTBP3 variants were found in individuals with early onset of acute aortic dissections, and some of these variants disrupted LTBP-3 levels or EGF-like domains. When compared to wild-type mice, Ltbp3-/-mice have enlarged aortic roots and ascending aortas. In summary, homozygous LTBP3 pathogenic variants predispose individuals to thoracic aortic aneurysms and dissections, along with the previously described skeletal and dental abnormalities.
PMCID:5985335
PMID: 29625025
ISSN: 1537-6605
CID: 3026182

L(3)mbt and the LINT complex safeguard cellular identity in the Drosophila ovary

Coux, Rémi-Xavier; Teixeira, Felipe Karam; Lehmann, Ruth
Maintenance of cellular identity is essential for tissue development and homeostasis. At the molecular level, cell identity is determined by the coordinated activation and repression of defined sets of genes. The tumor suppressor L(3)mbt was shown to secure cellular identity in Drosophila larval brains by repressing germline-specific genes. Here we interrogate the temporal and spatial requirements for L(3)mbt in the Drosophila ovary, and show that it safeguards the integrity of both somatic and germline tissues.L(3)mbtmutant ovaries exhibit multiple developmental defects, which we find to be largely caused by the inappropriate expression of a single gene,nanos, a key regulator of germline fate, in the somatic ovarian cells. In the female germline, we find that L(3)mbt represses testis-specific and neuronal genes. Molecularly, we show that L(3)mbt function in the ovary is mediated through its cofactor Lint1 but independent of the dREAM complex. Together, our work uncovers a more complex role for L(3)mbt than previously understood and demonstrates that L(3)mbt secures tissue identity by preventing the simultaneous expression of original identity markers and tissue-specific misexpression signatures.
PMCID:5963868
PMID: 29511022
ISSN: 1477-9129
CID: 2975182

Comprehensive Identification and Spatial Mapping of Habenular Neuronal Types Using Single-Cell RNA-Seq

Pandey, Shristi; Shekhar, Karthik; Regev, Aviv; Schier, Alexander F
The identification of cell types and marker genes is critical for dissecting neural development and function, but the size and complexity of the brain has hindered the comprehensive discovery of cell types. We combined single-cell RNA-seq (scRNA-seq) with anatomical brain registration to create a comprehensive map of the zebrafish habenula, a conserved forebrain hub involved in pain processing and learning. Single-cell transcriptomes of ∼13,000 habenular cells with 4× cellular coverage identified 18 neuronal types and dozens of marker genes. Registration of marker genes onto a reference atlas created a resource for anatomical and functional studies and enabled the mapping of active neurons onto neuronal types following aversive stimuli. Strikingly, despite brain growth and functional maturation, cell types were retained between the larval and adult habenula. This study provides a gene expression atlas to dissect habenular development and function and offers a general framework for the comprehensive characterization of other brain regions.
PMCID:6042852
PMID: 29576475
ISSN: 1879-0445
CID: 3060012

Unique features of pelvic brim morphology and associated musculature in Pongo [Meeting Abstract]

Shearer, Brian M.; Muchlinski, Magdalena; Hammond, Ashley S.
ISI:000430656804058
ISSN: 0002-9483
CID: 3127732

Manual joint size contributes to flexor muscle performance in suspensory taxa [Meeting Abstract]

Ramirez, Kristen R.; Prang, Thomas C.
ISI:000430656803135
ISSN: 0002-9483
CID: 3159402

Skeletal Muscle-Specific Deletion of MKP-1 Reveals a p38 MAPK/JNK/Akt Signaling Node That Regulates Obesity-Induced Insulin Resistance

Lawan, Ahmed; Min, Kisuk; Zhang, Lei; Canfran-Duque, Alberto; Jurczak, Michael J; Camporez, Joao Paulo G; Nie, Yaohui; Gavin, Timothy P; Shulman, Gerald I; Fernandez-Hernando, Carlos; Bennett, Anton M
Stress responses promote obesity and insulin resistance, in part, by activating the stress-responsive mitogen-activated protein kinases (MAPKs), p38 MAPK, and c-Jun NH2-terminal kinase (JNK). Stress also induces expression of MAPK phosphatase-1 (MKP-1), which inactivates both JNK and p38 MAPK. However, the equilibrium between JNK/p38 MAPK and MKP-1 signaling in the development of obesity and insulin resistance is unclear. Skeletal muscle is a major tissue involved in energy expenditure and glucose metabolism. In skeletal muscle, MKP-1 is upregulated in high-fat diet-fed mice and in skeletal muscle of obese humans. Mice lacking skeletal muscle expression of MKP-1 (MKP1-MKO) showed increased skeletal muscle p38 MAPK and JNK activities and were resistant to the development of diet-induced obesity. MKP1-MKO mice exhibited increased whole-body energy expenditure that was associated with elevated levels of myofiber-associated mitochondrial oxygen consumption. miR-21, a negative regulator of PTEN expression, was upregulated in skeletal muscle of MKP1-MKO mice, resulting in increased Akt activity consistent with enhanced insulin sensitivity. Our results demonstrate that skeletal muscle MKP-1 represents a critical signaling node through which inactivation of the p38 MAPK/JNK module promotes obesity and insulin resistance.
PMCID:5860856
PMID: 29317435
ISSN: 1939-327x
CID: 3064232