Searched for: school:SOM
Department/Unit:Neuroscience Institute
Morphological characterization of HVC projection neurons in the zebra finch (Taeniopygia guttata)
Benezra, Sam E; Narayanan, Rajeevan T; Egger, Robert; Oberlaender, Marcel; Long, Michael A
Singing behavior in the adult male zebra finch is dependent upon the activity of a cortical region known as HVC (proper name). The vast majority of HVC projection neurons send primary axons to either the downstream premotor nucleus RA (primary motor cortex) or Area X (basal ganglia), which play important roles in song production or song learning, respectively. In addition to these long-range outputs, HVC neurons also send local axon collaterals throughout that nucleus. Despite their implications for a range of circuit models, these local processes have never been completely reconstructed. Here we use in vivo single-neuron Neurobiotin fills to examine 40 projection neurons across 31 birds with somatic positions distributed across HVC. We show that HVC(RA)and HVC(X)neurons have categorically distinct dendritic fields. Additionally, these cell classes send axon collaterals that are either restricted to a small portion of HVC ("local neurons") or broadly distributed throughout the entire nucleus ("broadcast neurons"). Overall, these processes within HVC offer a structural basis for significant local processing underlying behaviorally-relevant population activity.
PMCID:6070301
PMID: 29577283
ISSN: 1096-9861
CID: 3011222
RACER-GRASP: Respiratory-weighted, aortic contrast enhancement-guided and coil-unstreaking golden-angle radial sparse MRI
Feng, Li; Huang, Chenchan; Shanbhogue, Krishna; Sodickson, Daniel K; Chandarana, Hersh; Otazo, Ricardo
PURPOSE: To develop and evaluate a novel dynamic contrast-enhanced imaging technique called RACER-GRASP (Respiratory-weighted, Aortic Contrast Enhancement-guided and coil-unstReaking Golden-angle RAdial Sparse Parallel) MRI that extends GRASP to include automatic contrast bolus timing, respiratory motion compensation, and coil-weighted unstreaking for improved imaging performance in liver MRI. METHODS: In RACER-GRASP, aortic contrast enhancement (ACE) guided k-space sorting and respiratory-weighted sparse reconstruction are performed using aortic contrast enhancement and respiratory motion signals extracted directly from the acquired data. Coil unstreaking aims to weight multicoil k-space according to streaking artifact level calculated for each individual coil during image reconstruction, so that coil elements containing a high level of streaking artifacts contribute less to the final results. Self-calibrating GRAPPA operator gridding was applied as a pre-reconstruction step to reduce computational burden in the subsequent iterative reconstruction. The RACER-GRASP technique was compared with standard GRASP reconstruction in a group of healthy volunteers and patients referred for clinical liver MR examination. RESULTS: Compared with standard GRASP, RACER-GRASP significantly improved overall image quality (average score: 3.25 versus 3.85) and hepatic vessel sharpness/clarity (average score: 3.58 versus 4.0), and reduced residual streaking artifact level (average score: 3.23 versus 3.94) in different contrast phases. RACER-GRASP also enabled automatic timing of the arterial phases. CONCLUSIONS: The aortic contrast enhancement-guided sorting, respiratory motion suppression and coil unstreaking introduced by RACER-GRASP improve upon the imaging performance of standard GRASP for free-breathing dynamic contrast-enhanced MRI of the liver. Magn Reson Med, 2017. (c) 2017 International Society for Magnetic Resonance in Medicine.
PMCID:5876099
PMID: 29193260
ISSN: 1522-2594
CID: 2797952
Localizing Event-Related Potentials Using Multi-source Minimum Variance Beamformers: A Validation Study
Herdman, Anthony T; Moiseev, Alexander; Ribary, Urs
Adaptive and non-adaptive beamformers have become a prominent neuroimaging tool for localizing neural sources of electroencephalographic (EEG) and magnetoencephalographic (MEG) data. In this study, we investigated single-source and multi-source scalar beamformers with respect to their performances in localizing and reconstructing source activity for simulated and real EEG data. We compared a new multi-source search approach (multi-step iterative approach; MIA) to our previous multi-source search approach (single-step iterative approach; SIA) and a single-source search approach (single-step peak approach; SPA). In order to compare performances across these beamformer approaches, we manipulated various simulated source parameters, such as the amount of signal-to-noise ratio (0.1-0.9), inter-source correlations (0.3-0.9), number of simultaneously active sources (2-8), and source locations. Results showed that localization performance followed the order of MIA > SIA > SPA regardless of the number of sources, source correlations, and single-to-noise ratios. In addition, SIA and MIA were significantly better than SPA at localizing four or more sources. Moreover, MIA was better than SIA and SPA at identifying the true source locations when signal characteristics were at their poorest. Source waveform reconstructions were similar between MIA and SIA but were significantly better than that for SPA. A similar trend was also found when applying these beamformer approaches to a real EEG dataset. Based on our findings, we conclude that multi-source beamformers (MIA and SIA) are an improvement over single-source beamformers for localizing EEG. Importantly, our new search method, MIA, had better localization performance, localization precision, and source waveform reconstruction as compared to SIA or SPA. We therefore recommend its use for improved source localization and waveform reconstruction of event-related potentials.
PMID: 29450808
ISSN: 1573-6792
CID: 2990522
Robust, Transient Neural Dynamics during Conscious Perception
He, Biyu J
While neuroscientific research on perceptual awareness has traditionally focused on the spatial and temporal localizations of neural activity underlying conscious processing, recent development suggests that the dynamic characteristics of spatiotemporally distributed neural activity contain important clues about the neural computational mechanisms underlying conscious processing. Here, we summarize recent progress.
PMID: 29764721
ISSN: 1879-307x
CID: 3121392
Tau-targeting therapies for Alzheimer disease
Congdon, Erin E; Sigurdsson, Einar M
Alzheimer disease (AD) is the most common form of dementia. Pathologically, AD is characterized by amyloid plaques and neurofibrillary tangles in the brain, with associated loss of synapses and neurons, resulting in cognitive deficits and eventually dementia. Amyloid-β (Aβ) peptide and tau protein are the primary components of the plaques and tangles, respectively. In the decades since Aβ and tau were identified, development of therapies for AD has primarily focused on Aβ, but tau has received more attention in recent years, in part because of the failure of various Aβ-targeting treatments in clinical trials. In this article, we review the current status of tau-targeting therapies for AD. Initially, potential anti-tau therapies were based mainly on inhibition of kinases or tau aggregation, or on stabilization of microtubules, but most of these approaches have been discontinued because of toxicity and/or lack of efficacy. Currently, the majority of tau-targeting therapies in clinical trials are immunotherapies, which have shown promise in numerous preclinical studies. Given that tau pathology correlates better with cognitive impairments than do Aβ lesions, targeting of tau is expected to be more effective than Aβ clearance once the clinical symptoms are evident. With future improvements in diagnostics, these two hallmarks of the disease might be targeted prophylactically.
PMID: 29895964
ISSN: 1759-4766
CID: 3155222
A potential neurophysiological correlate of electric-acoustic pitch matching in adult cochlear implant users: Pilot data
Tan, Chin-Tuan; Martin, Brett A; Svirsky, Mario A
The overall goal of this study was to identify an objective physiological correlate of electric-acoustic pitch matching in unilaterally implanted cochlear implant (CI) participants with residual hearing in the non-implanted ear. Electrical and acoustic stimuli were presented in a continuously alternating fashion across ears. The acoustic stimulus and the electrical stimulus were either matched or mismatched in pitch. Auditory evoked potentials were obtained from nine CI users. Results indicated that N1 latency was stimulus-dependent, decreasing when the acoustic frequency of the tone presented to the non-implanted ear was increased. More importantly, there was an additional decrease in N1 latency in the pitch-matched condition. These results indicate the potential utility of N1 latency as an index of pitch matching in CI users.
PMCID:6123823
PMID: 29508662
ISSN: 1754-7628
CID: 2992042
Disaster Management
Grossman, Robert I
PMID: 29762099
ISSN: 1527-1315
CID: 3120762
Approaching ultimate intrinsic specific absorption rate in radiofrequency shimming using high-permittivity materials at 7 Tesla
Haemer, Gillian G; Vaidya, Manushka; Collins, Christopher M; Sodickson, Daniel K; Wiggins, Graham C; Lattanzi, Riccardo
PURPOSE: The aim of this study was to evaluate the effect of integrated high-permittivity materials (HPMs) on excitation homogeneity and global specific absorption rate (SAR) for transmit arrays at 7T. METHODS: A rapid electrodynamic simulation framework was used to calculate L-curves associated with excitation of a uniform 2D profile in a dielectric sphere. We used ultimate intrinsic SAR as an absolute performance reference to compare different transmit arrays in the presence and absence of a layer of HPM. We investigated the optimal permittivity for the HPM as a function of its thickness, the sample size, and the number of array elements. RESULTS: Adding a layer of HPM can improve the performance of a 24-element array to match that of a 48-element array without HPM, whereas a 48-element array with HPM can perform as well as a 64-element array without HPM. Optimal relative permittivity values changed based on sample and coil geometry, but were always within a range obtainable with readily available materials (epsilonr = 100-200). CONCLUSION: Integration of HPMs could be a practical method to improve RF shimming performance, alternative to increasing the number of coils. The proposed simulation framework could be used to explore the design of novel transmit arrays for head imaging at ultra-high field strength. Magn Reson Med, 2017. (c) 2017 International Society for Magnetic Resonance in Medicine.
PMCID:5876092
PMID: 29193307
ISSN: 1522-2594
CID: 2797942
A bidirectional relationship between sleep and oxidative stress in Drosophila
Hill, Vanessa M; O'Connor, Reed M; Sissoko, Gunter B; Irobunda, Ifeoma S; Leong, Stephen; Canman, Julie C; Stavropoulos, Nicholas; Shirasu-Hiza, Mimi
Although sleep appears to be broadly conserved in animals, the physiological functions of sleep remain unclear. In this study, we sought to identify a physiological defect common to a diverse group of short-sleeping Drosophila mutants, which might provide insight into the function and regulation of sleep. We found that these short-sleeping mutants share a common phenotype of sensitivity to acute oxidative stress, exhibiting shorter survival times than controls. We further showed that increasing sleep in wild-type flies using genetic or pharmacological approaches increases survival after oxidative challenge. Moreover, reducing oxidative stress in the neurons of wild-type flies by overexpression of antioxidant genes reduces the amount of sleep. Together, these results support the hypothesis that a key function of sleep is to defend against oxidative stress and also point to a reciprocal role for reactive oxygen species (ROS) in neurons in the regulation of sleep.
PMCID:6042693
PMID: 30001323
ISSN: 1545-7885
CID: 3192292
Characterizing intra-axonal water diffusion with direction-averaged triple diffusion encoding MRI
Jensen, Jens H; Helpern, Joseph A
For large diffusion weightings, the direction-averaged diffusion MRI (dMRI) signal from white matter is typically dominated by the contribution of water confined to axons. This fact can be exploited to characterize intra-axonal diffusion properties, which may be valuable for interpreting the biophysical meaning of diffusion changes associated with pathology. However, using just the classic Stejskal-Tanner pulse sequence, it has proven challenging to obtain reliable estimates for both the intrinsic intra-axonal diffusivity and the intra-axonal water fraction. Here we propose to apply a modification of the Stejskal-Tanner sequence designed for achieving such estimates. The key feature of the sequence is the addition of a set of extra diffusion encoding gradients that are orthogonal to the direction of the primary gradients, which corresponds to a specific type of triple diffusion encoding (TDE) MRI sequence. Given direction-averaged dMRI data for this TDE sequence, it is shown how the intra-axonal diffusivity and the intra-axonal water fraction can be determined by applying simple, analytic formulae. The method is illustrated with numerical simulations, which suggest that it should be accurate for b-values of about 4000Â s/mm2 or higher.
PMID: 29727508
ISSN: 1099-1492
CID: 3163742