Try a new search

Format these results:

Searched for:

person:nwb2

Total Results:

391


Calcitonin receptor-like receptor and receptor activity modifying protein 1 in the rat dorsal horn: localization in glutamatergic presynaptic terminals containing opioids and adrenergic alpha2C receptors

Marvizón, J C G; Pérez, O A; Song, B; Chen, W; Bunnett, N W; Grady, E F; Todd, A J
Calcitonin gene-related peptide (CGRP) is abundant in the central terminals of primary afferents. However, the function of CGRP receptors in the spinal cord remains unclear. CGRP receptors are heterodimers of calcitonin receptor-like receptor (CRLR) and receptor activity modifying protein 1 (RAMP1). We studied the localization of CRLR and RAMP1 in the rat dorsal horn using well-characterized antibodies against them, which labeled numerous puncta in laminae I-II. In addition, RAMP1 was found in cell bodies, forming patches at the cell surface. The CRLR- and RAMP1-immunoreactive puncta were further characterized using double and triple labeling. Colocalization was quantified in confocal stacks using Imaris software. CRLR did not colocalize with primary afferent markers, indicating that these puncta were not primary afferent terminals. CRLR- and RAMP1-immunoreactive puncta contained synaptophysin and vesicular glutamate transporter-2 (VGLUT2), showing that they were glutamatergic presynaptic terminals. Electron microscopic immunohistochemistry confirmed that CRLR immunoreactivity was present in axonal boutons that were not in synaptic glomeruli. Using tyramide signal amplification for double labeling with the CRLR and RAMP1 antibodies, we found some clear instances of colocalization of CRLR with RAMP1 in puncta, but their overall colocalization was low. In particular, CRLR was absent from RAMP1-containing cells. Many of the puncta stained for CRLR and RAMP1 were labeled by anti-opioid and anti-enkephalin antibodies. CRLR and, to a lesser extent, RAMP1 also colocalized with adrenergic alpha(2C) receptors. Triple label studies demonstrated three-way colocalization of CRLR-VGLUT2-synaptophysin, CRLR-VGLUT2-opioids, and CRLR-opioids-alpha(2C) receptors. In conclusion, CRLR is located in glutamatergic presynaptic terminals in the dorsal horn that contain alpha(2C) adrenergic receptors and opioids. Some of these terminals contain RAMP1, which may form CGRP receptors with CRLR, but in others CRLR may form other receptors, possibly by dimerizing with RAMP2 or RAMP3. These findings suggest that CGRP or adrenomedullin receptors modulate opioid release in the dorsal horn.
PMCID:2329818
PMID: 17614212
ISSN: 0306-4522
CID: 4157222

Endothelin-converting enzyme 1 degrades neuropeptides in endosomes to control receptor recycling

Roosterman, Dirk; Cottrell, Graeme S; Padilla, Benjamin E; Muller, Laurent; Eckman, Christopher B; Bunnett, Nigel W; Steinhoff, Martin
Neuropeptide signaling requires the presence of G protein-coupled receptors (GPCRs) at the cell surface. Activated GPCRs interact with beta-arrestins, which mediate receptor desensitization, endocytosis, and mitogenic signaling, and the peptide-receptor-arrestin complex is sequestered into endosomes. Although dissociation of beta-arrestins is required for receptor recycling and resensitization, the critical event that initiates this process is unknown. Here we report that the agonist availability in the endosomes, controlled by the membrane metalloendopeptidase endothelin-converting enzyme 1 (ECE-1), determines stability of the peptide-receptor-arrestin complex and regulates receptor recycling and resensitization. Substance P (SP) binding to the tachykinin neurokinin 1 receptor (NK1R) induced membrane translocation of beta-arrestins followed by trafficking of the SP-NK1R-beta-arrestin complex to early endosomes containing ECE-1a-d. ECE-1 degraded SP in acidified endosomes, disrupting the complex; beta-arrestins returned to the cytosol, and the NK1R, freed from beta-arrestins, recycled and resensitized. An ECE-1 inhibitor, by preventing NK1R recycling in endothelial cells, inhibited resensitization of SP-induced inflammation. This mechanism is a general one because ECE-1 similarly regulated NK3R resensitization. Thus, peptide availability in endosomes, here regulated by ECE-1, determines the stability of the peptide-receptor-arrestin complex. This mechanism regulates receptor recycling, which is necessary for sustained signaling, and it may also control beta-arrestin-dependent mitogenic signaling of endocytosed receptors. We propose that other endosomal enzymes and transporters may similarly control the availability of transmitters in endosomes to regulate trafficking and signaling of GPCRs. Antagonism of these endosomal processes represents a strategy for inhibiting sustained signaling of receptors, and defects may explain the tachyphylaxis of drugs that are receptor agonists.
PMCID:1913888
PMID: 17592116
ISSN: 0027-8424
CID: 4157212

Agonists of protease-activated receptors 1 and 2 stimulate electrolyte secretion from mouse gallbladder

Kirkland, Jacob G; Cottrell, Graeme S; Bunnett, Nigel W; Corvera, Carlos U
Cholecystitis is one of the most common gastrointestinal diseases. Inflammation induces the activation of proteases that can signal to cells by cleaving protease-activated receptors (PARs) to induce hemostasis, inflammation, pain, and repair. However, the distribution of PARs in the gallbladder is unknown, and their effects on gallbladder function have not been fully investigated. We localized immunoreactive PAR(1) and PAR(2) to the epithelium, muscle, and serosa of mouse gallbladder. mRNA transcripts corresponding to PAR(1) and PAR(2), but not PAR(4), were detected by RT-PCR and sequencing. Addition of thrombin and a PAR(1)-selective activating peptide (TFLLRN-NH(2)) to the serosal surface of mouse gallbladder mounted in an Ussing chamber stimulated an increase in short-circuit current in wild-type but not PAR(1) knockout mice. Similarly, serosally applied trypsin and PAR(2) activating peptide (SLIGRL-NH(2)) increased short-circuit current in wild-type but not PAR(2) knockout mice. Proteases and activating peptides strongly inhibited electrogenic responses to subsequent stimulation with the same agonist, indicating homologous desensitization. Removal of HCO(3)(-) ions from the serosal buffer reduced responses to thrombin and trypsin by >80%. Agonists of PAR(1) and PAR(2) increase intracellular Ca(2+) concentration in isolated and cultured gallbladder epithelial cells. The COX-2 inhibitor meloxicam and an inhibitor of CFTR prevented the stimulatory effect of PAR(1) but not PAR(2). Thus PAR(1) and PAR(2) are expressed in the epithelium of the mouse gallbladder, and serosally applied proteases cause a HCO(3)(-) secretion. The effects of PAR(1) but not PAR(2) depend on generation of prostaglandins and activation of CFTR. These mechanisms may markedly influence fluid and electrolyte secretion of the inflamed gallbladder when multiple proteases are generated.
PMID: 17431214
ISSN: 0193-1857
CID: 4157192

Protease-activated receptor 2, dipeptidyl peptidase I, and proteases mediate Clostridium difficile toxin A enteritis

Cottrell, Graeme S; Amadesi, Silvia; Pikios, Stella; Camerer, Eric; Willardsen, J Adam; Murphy, Brett R; Caughey, George H; Wolters, Paul J; Coughlin, Shaun R; Peterson, Anders; Knecht, Wolfgang; Pothoulakis, Charalabos; Bunnett, Nigel W; Grady, Eileen F
BACKGROUND & AIMS/OBJECTIVE:We studied the role of protease-activated receptor 2 (PAR(2)) and its activating enzymes, trypsins and tryptase, in Clostridium difficile toxin A (TxA)-induced enteritis. METHODS:We injected TxA into ileal loops in PAR(2) or dipeptidyl peptidase I (DPPI) knockout mice or in wild-type mice pretreated with tryptase inhibitors (FUT-175 or MPI-0442352) or soybean trypsin inhibitor. We examined the effect of TxA on expression and activity of PAR(2) and trypsin IV messenger RNA in the ileum and cultured colonocytes. We injected activating peptide (AP), trypsins, tryptase, and p23 in wild-type mice, some pretreated with the neurokinin 1 receptor antagonist SR140333. RESULTS:TxA increased fluid secretion, myeloperoxidase activity in fluid and tissue, and histologic damage. PAR(2) deletion decreased TxA-induced ileitis, reduced luminal fluid secretion by 20%, decreased tissue and fluid myeloperoxidase by 50%, and diminished epithelial damage, edema, and neutrophil infiltration. DPPI deletion reduced secretion by 20% and fluid myeloperoxidase by 55%. In wild-type mice, FUT-175 or MPI-0442352 inhibited secretion by 24%-28% and tissue and fluid myeloperoxidase by 31%-71%. Soybean trypsin inhibitor reduced secretion to background levels and tissue myeloperoxidase by up to 50%. TxA increased expression of PAR(2) and trypsin IV in enterocytes and colonocytes and caused a 2-fold increase in Ca(2+) responses to PAR(2) AP. AP, tryptase, and trypsin isozymes (trypsin I/II, trypsin IV, p23) caused ileitis. SR140333 prevented AP-induced ileitis. CONCLUSIONS:PAR(2) and its activators are proinflammatory in TxA-induced enteritis. TxA stimulates existing PAR(2) and up-regulates PAR(2) and activating proteases, and PAR(2) causes inflammation by neurogenic mechanisms.
PMID: 17570216
ISSN: 0016-5085
CID: 4157202

Mechanisms of protease-activated receptor 2-evoked hyperexcitability of nociceptive neurons innervating the mouse colon

Kayssi, Ahmed; Amadesi, Silvia; Bautista, Francisco; Bunnett, Nigel W; Vanner, Stephen
Agonists of protease-activated receptor 2 (PAR(2)) evoke hyperexcitability of dorsal root ganglia (DRG) neurons by unknown mechanisms. We examined the cellular mechanisms underlying PAR(2)-evoked hyperexcitability of mouse colonic DRG neurons to determine their potential role in pain syndromes such as visceral hyperalgesia. Colonic DRG neurons were identified by injecting Fast Blue and DiI retrograde tracers into the mouse colon. Using immunofluorescence, we found that DiI-labelled neurons contained PAR(2) immunoreactivity, confirming the presence of receptors on colonic neurons. Whole-cell current-clamp recordings of acutely dissociated neurons demonstrated that PAR(2) activation with a brief application (3 min) of PAR(2) agonists, SLIGRL-NH(2) and trypsin, evoked sustained depolarizations (up to 60 min) which were associated with increased input resistance and a marked reduction in rheobase (50% at 30 min). In voltage clamp, SLIGRL-NH(2) markedly suppressed delayed rectifier I(K) currents (55% at 10 min), but had no effect on the transient I(A) current or TTX-resistant Na(+) currents. In whole-cell current-clamp recordings, the sustained excitability evoked by PAR(2) activation was blocked by the PKC inhibitor, calphostin, and the ERK(1/2) inhibitor PD98059. Studies of ERK(1/2) phosphorylation using confocal microscopy demonstrated that SLIGRL-NH(2) increased levels of immunoreactive pERK(1/2) in DRG neurons, particularly in proximity to the plasma membrane. Thus, activation of PAR(2) receptors on colonic nociceptive neurons causes sustained hyperexcitability that is related, at least in part, to suppression of delayed rectifier I(K) currents. Both PKC and ERK(1/2) mediate the PAR(2)-induced hyperexcitability. These studies describe a novel mechanism of sensitization of colonic nociceptive neurons that may be implicated in conditions of visceral hyperalgesia such as irritable bowel syndrome.
PMCID:2075455
PMID: 17289784
ISSN: 0022-3751
CID: 4157162

Post-endocytic sorting of calcitonin receptor-like receptor and receptor activity-modifying protein 1

Cottrell, Graeme S; Padilla, Benjamin; Pikios, Stella; Roosterman, Dirk; Steinhoff, Martin; Grady, Eileen F; Bunnett, Nigel W
Calcitonin receptor-like receptor (CLR) and the receptor activity-modifying protein 1 (RAMP1) comprise a receptor for calcitonin gene-related peptide (CGRP). Although CGRP induces endocytosis of CLR/RAMP1, little is known about post-endocytic sorting of these proteins. We observed that the duration of stimulation with CGRP markedly affected post-endocytic sorting of CLR/RAMP1. In HEK and SK-N-MC cells, transient stimulation (10(-7) M CGRP, 1 h), induced CLR/RAMP1 recycling with similar kinetics (2-6 h), demonstrated by labeling receptors in living cells with antibodies to extracellular epitopes. Recycling of CLR/RAMP1 correlated with resensitization of CGRP-induced increases in [Ca(2+)](i). Cycloheximide did not affect resensitization, but bafilomycin A(1), an inhibitor of vacuolar H(+)-ATPases, abolished resensitization. Recycling CLR and RAMP1 were detected in endosomes containing Rab4a and Rab11a, and expression of GTPase-defective Rab4aS22N and Rab11aS25N inhibited resensitization. After sustained stimulation (10(-7) M CGRP, >2 h), CLR/RAMP1 trafficked to lysosomes. RAMP1 was degraded approximately 4-fold more rapidly than CLR (RAMP1, 45% degradation, 5 h; CLR, 54% degradation, 16 h), determined by Western blotting. Inhibitors of lysosomal, but not proteasomal, proteases prevented degradation. Sustained stimulation did not induce detectable mono- or polyubiquitination of CLR or RAMP1, determined by immunoprecipitation and Western blotting. Moreover, a RAMP1 mutant lacking the only intracellular lysine (RAMP1K142R) internalized and was degraded normally. Thus, after transient stimulation with CGRP, CLR and RAMP1 traffic from endosomes to the plasma membrane, which mediates resensitization. After sustained stimulation, CLR and RAMP1 traffic from endosomes to lysosomes by ubiquitin-independent mechanisms, where they are degraded at different rates.
PMID: 17310067
ISSN: 0021-9258
CID: 4157182

Agonist-induced endocytosis of rat somatostatin receptor 1

Roosterman, Dirk; Kreuzer, Oliver J; Brune, Nicole; Cottrell, Graeme S; Bunnett, Nigel W; Meyerhof, Wolfgang; Steinhoff, Martin
Somatostatin-receptor 1 (sst1) is an autoreceptor in the central nervous system that regulates the release of somatostatin. Sst1 is present intracellularly and at the cell surface. To investigate sst1 trafficking, rat sst1 tagged with epitope was expressed in rat insulinoma cells 1046-38 (RIN-1046-38) and tracked by antibody labeling. Confocal microscopic analysis revealed colocalization of intracellularly localized rat sst1-human simplex virus (HSV) with Rab5a-green fluorescent protein and Rab11a-green fluorescent protein, indicating the distribution of the receptor in endocytotic and recycling organelles. Somatostatin-14 induced internalization of cell surface receptors and reduction of binding sites on the cell surface. It also stimulated recruitment of intracellular sst1-HSV to the plasma membrane. Confocal analysis of sst1-HSV revealed that the receptor was initially transported within superficial vesicles. Prolonged stimulation of the cells with the peptide agonist induced intracellular accumulation of somatostatin-14. Because the number of cell surface binding sites did not change during prolonged stimulation, somatostatin-14 was internalized through a dynamic process of continuous endocytosis, recycling, and recruitment of intracellularly present sst1-HSV. Accumulated somatostatin-14 bypassed degradation via the endosomal-lysosomal route and was instead rapidly released as intact and biologically active somatostatin-14. Our results show for the first time that sst1 mediates a dynamic process of endocytosis, recycling, and re-endocytosis of its cognate ligand.
PMID: 17170097
ISSN: 0013-7227
CID: 4157132

Role for protease activity in visceral pain in irritable bowel syndrome

Cenac, Nicolas; Andrews, Christopher N; Holzhausen, Marinella; Chapman, Kevin; Cottrell, Graeme; Andrade-Gordon, Patricia; Steinhoff, Martin; Barbara, Giovanni; Beck, Paul; Bunnett, Nigel W; Sharkey, Keith A; Ferraz, Jose Geraldo P; Shaffer, Eldon; Vergnolle, Nathalie
Mediators involved in the generation of symptoms in patients with irritable bowel syndrome (IBS) are poorly understood. Here we show that colonic biopsy samples from IBS patients release increased levels of proteolytic activity (arginine cleavage) compared to asymptomatic controls. This was dependent on the activation of NF-kappaB. In addition, increased proteolytic activity was measured in vivo, in colonic washes from IBS compared with control patients. Trypsin and tryptase expression and release were increased in colonic biopsies from IBS patients compared with control subjects. Biopsies from IBS patients (but not controls) released mediators that sensitized murine sensory neurons in culture. Sensitization was prevented by a serine protease inhibitor and was absent in neurons lacking functional protease-activated receptor-2 (PAR2). Supernatants from colonic biopsies of IBS patients, but not controls, also caused somatic and visceral hyperalgesia and allodynia in mice, when administered into the colon. These pronociceptive effects were inhibited by serine protease inhibitors and a PAR2 antagonist and were absent in PAR2-deficient mice. Our study establishes that proteases are released in IBS and that they can directly stimulate sensory neurons and generate hypersensitivity symptoms through the activation of PAR2.
PMCID:1794118
PMID: 17304351
ISSN: 0021-9738
CID: 4157172

Predominant surface distribution of neurokinin-3 receptors in non-dopaminergic dendrites in the rat substantia nigra and ventral tegmental area

Lessard, A; Grady, E F; Bunnett, N W; Pickel, V M
Neurokinin-3 (NK(3)) receptors are prevalent within the substantia nigra (SN) and ventral tegmental area (VTA), where their activation can affect motor and motivational behaviors as well as cardiovascular function and stress responses. These actions are mediated, in part, by dopaminergic neurons in each region. To determine the relevant sites for activation of these receptors, we examined the electron microscopic localization of NK(3) receptors and tyrosine hydroxylase (TH), the catecholamine synthesizing enzyme in dopaminergic neurons in the SN and VTA of rat brain. In each region, immunogold-silver labeling for NK(3) receptors was detected in many somatodendritic profiles, some of which contained TH-immunoreactivity. NK(3)-immunogold particles were largely associated with endomembranes resembling smooth endoplasmic reticulum, and only occasionally located on the plasma membrane in TH-labeled dendrites. In comparison with these dendrites, non-TH immunoreactive dendrites contained significantly more total (VTA) and more plasmalemmal (VTA and SN) NK(3)-immunogold particles. In each region, NK(3) gold particles also were seen in axonal as well as glial profiles, some of which contacted TH-immunoreactive dendrites. The NK(3)-labeled axon terminals formed either symmetric or asymmetric, excitatory-type synapses, the latter of which were significantly more prevalent in the VTA, compared with SN. These results provide the first ultrastructural evidence indicating that NK(3) receptors are available in cytoplasmic reserve in dopaminergic neurons, but more immediately accessible at the plasmalemmal surface of non-dopaminergic dendrites in both the SN and VTA. The activation of these receptors, together with the NK(3) receptors in either the presynaptic axon terminals or glia may contribute to the diverse physiological effects of tachykinins in each region, and most prominently involving excitatory inputs to the VTA.
PMID: 17197098
ISSN: 0306-4522
CID: 4157142

Protease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice

Grant, Andrew D; Cottrell, Graeme S; Amadesi, Silvia; Trevisani, Marcello; Nicoletti, Paola; Materazzi, Serena; Altier, Christophe; Cenac, Nicolas; Zamponi, Gerald W; Bautista-Cruz, Francisco; Lopez, Carlos Barajas; Joseph, Elizabeth K; Levine, Jon D; Liedtke, Wolfgang; Vanner, Stephen; Vergnolle, Nathalie; Geppetti, Pierangelo; Bunnett, Nigel W
Exacerbated sensitivity to mechanical stimuli that are normally innocuous or mildly painful (mechanical allodynia and hyperalgesia) occurs during inflammation and underlies painful diseases. Proteases that are generated during inflammation and disease cleave protease-activated receptor 2 (PAR2) on afferent nerves to cause mechanical hyperalgesia in the skin and intestine by unknown mechanisms. We hypothesized that PAR2-mediated mechanical hyperalgesia requires sensitization of the ion channel transient receptor potential vanilloid 4 (TRPV4). Immunoreactive TRPV4 was coexpressed by rat dorsal root ganglia (DRG) neurons with PAR2, substance P (SP) and calcitonin gene-related peptide (CGRP), mediators of pain transmission. In PAR2-expressing cell lines that either naturally expressed TRPV4 (bronchial epithelial cells) or that were transfected to express TRPV4 (HEK cells), pretreatment with a PAR2 agonist enhanced Ca2+ and current responses to the TRPV4 agonists phorbol ester 4alpha-phorbol 12,13-didecanoate (4alphaPDD) and hypotonic solutions. PAR2-agonist similarly sensitized TRPV4 Ca2+ signals and currents in DRG neurons. Antagonists of phospholipase Cbeta and protein kinases A, C and D inhibited PAR2-induced sensitization of TRPV4 Ca2+ signals and currents. 4alphaPDD and hypotonic solutions stimulated SP and CGRP release from dorsal horn of rat spinal cord, and pretreatment with PAR2 agonist sensitized TRPV4-dependent peptide release. Intraplantar injection of PAR2 agonist caused mechanical hyperalgesia in mice and sensitized pain responses to the TRPV4 agonists 4alphaPDD and hypotonic solutions. Deletion of TRPV4 prevented PAR2 agonist-induced mechanical hyperalgesia and sensitization. This novel mechanism, by which PAR2 activates a second messenger to sensitize TRPV4-dependent release of nociceptive peptides and induce mechanical hyperalgesia, may underlie inflammatory hyperalgesia in diseases where proteases are activated and released.
PMID: 17124270
ISSN: 0022-3751
CID: 4157122