Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Neuroscience Institute

Total Results:

13366


Choline supplementation in early life improves and low levels of choline can impair outcomes in a mouse model of Alzheimer's disease

Chartampila, Elissavet; Elayouby, Karim S; Leary, Paige; LaFrancois, John J; Alcantara-Gonzalez, David; Jain, Swati; Gerencer, Kasey; Botterill, Justin J; Ginsberg, Stephen D; Scharfman, Helen E
Maternal choline supplementation (MCS) improves cognition in Alzheimer's disease (AD) models. However, the effects of MCS on neuronal hyperexcitability in AD are unknown. We investigated the effects of MCS in a well-established mouse model of AD with hyperexcitability, the Tg2576 mouse. The most common type of hyperexcitability in Tg2576 mice are generalized EEG spikes (interictal spikes [IIS]). IIS also are common in other mouse models and occur in AD patients. In mouse models, hyperexcitability is also reflected by elevated expression of the transcription factor ∆FosB in the granule cells (GCs) of the dentate gyrus (DG), which are the principal cell type. Therefore, we studied ΔFosB expression in GCs. We also studied the neuronal marker NeuN within hilar neurons of the DG because reduced NeuN protein expression is a sign of oxidative stress or other pathology. This is potentially important because hilar neurons regulate GC excitability. Tg2576 breeding pairs received a diet with a relatively low, intermediate, or high concentration of choline. After weaning, all mice received the intermediate diet. In offspring of mice fed the high choline diet, IIS frequency declined, GC ∆FosB expression was reduced, and hilar NeuN expression was restored. Using the novel object location task, spatial memory improved. In contrast, offspring exposed to the relatively low choline diet had several adverse effects, such as increased mortality. They had the weakest hilar NeuN immunoreactivity and greatest GC ΔFosB protein expression. However, their IIS frequency was low, which was surprising. The results provide new evidence that a diet high in choline in early life can improve outcomes in a mouse model of AD, and relatively low choline can have mixed effects. This is the first study showing that dietary choline can regulate hyperexcitability, hilar neurons, ΔFosB, and spatial memory in an animal model of AD.
PMID: 38904658
ISSN: 2050-084x
CID: 5672412

Monitoring norepinephrine release in vivo using next-generation GRABNE sensors

Feng, Jiesi; Dong, Hui; Lischinsky, Julieta E; Zhou, Jingheng; Deng, Fei; Zhuang, Chaowei; Miao, Xiaolei; Wang, Huan; Li, Guochuan; Cai, Ruyi; Xie, Hao; Cui, Guohong; Lin, Dayu; Li, Yulong
Norepinephrine (NE) is an essential biogenic monoamine neurotransmitter. The first-generation NE sensor makes in vivo, real-time, cell-type-specific and region-specific NE detection possible, but its low NE sensitivity limits its utility. Here, we developed the second-generation GPCR-activation-based NE sensors (GRABNE2m and GRABNE2h) with a superior response and high sensitivity and selectivity to NE both in vitro and in vivo. Notably, these sensors can detect NE release triggered by either optogenetic or behavioral stimuli in freely moving mice, producing robust signals in the locus coeruleus and hypothalamus. With the development of a novel transgenic mouse line, we recorded both NE release and calcium dynamics with dual-color fiber photometry throughout the sleep-wake cycle; moreover, dual-color mesoscopic imaging revealed cell-type-specific spatiotemporal dynamics of NE and calcium during sensory processing and locomotion. Thus, these new GRABNE sensors are valuable tools for monitoring the precise spatiotemporal release of NE in vivo, providing new insights into the physiological and pathophysiological roles of NE.
PMID: 38547869
ISSN: 1097-4199
CID: 5645192

Large-scale foundation models and generative AI for BigData neuroscience

Wang, Ran; Chen, Zhe Sage
Recent advances in machine learning have led to revolutionary breakthroughs in computer games, image and natural language understanding, and scientific discovery. Foundation models and large-scale language models (LLMs) have recently achieved human-like intelligence thanks to BigData. With the help of self-supervised learning (SSL) and transfer learning, these models may potentially reshape the landscapes of neuroscience research and make a significant impact on the future. Here we present a mini-review on recent advances in foundation models and generative AI models as well as their applications in neuroscience, including natural language and speech, semantic memory, brain-machine interfaces (BMIs), and data augmentation. We argue that this paradigm-shift framework will open new avenues for many neuroscience research directions and discuss the accompanying challenges and opportunities.
PMID: 38897235
ISSN: 1872-8111
CID: 5672162

Stimulation of caudal inferior and middle frontal gyri disrupts planning during spoken interaction

Castellucci, Gregg A; Kovach, Christopher K; Tabasi, Farhad; Christianson, David; Greenlee, Jeremy D W; Long, Michael A
Turn-taking is a central feature of conversation across languages and cultures.1
PMID: 38823382
ISSN: 1879-0445
CID: 5664102

Preliminary Experience with Three Alternative Motion Sensors for 0.55 Tesla MR Imaging

Tibrewala, Radhika; Brantner, Douglas; Brown, Ryan; Pancoast, Leanna; Keerthivasan, Mahesh; Bruno, Mary; Block, Kai Tobias; Madore, Bruno; Sodickson, Daniel K; Collins, Christopher M
Due to limitations in current motion tracking technologies and increasing interest in alternative sensors for motion tracking both inside and outside the MRI system, in this study we share our preliminary experience with three alternative sensors utilizing diverse technologies and interactions with tissue to monitor motion of the body surface, respiratory-related motion of major organs, and non-respiratory motion of deep-seated organs. These consist of (1) a Pilot-Tone RF transmitter combined with deep learning algorithms for tracking liver motion, (2) a single-channel ultrasound transducer with deep learning for monitoring bladder motion, and (3) a 3D Time-of-Flight camera for observing the motion of the anterior torso surface. Additionally, we demonstrate the capability of these sensors to simultaneously capture motion data outside the MRI environment, which is particularly relevant for procedures like radiation therapy, where motion status could be related to previously characterized cyclical anatomical data. Our findings indicate that the ultrasound sensor can track motion in deep-seated organs (bladder) as well as respiratory-related motion. The Time-of-Flight camera offers ease of interpretation and performs well in detecting surface motion (respiration). The Pilot-Tone demonstrates efficacy in tracking bulk respiratory motion and motion of major organs (liver). Simultaneous use of all three sensors could provide complementary motion information outside the MRI bore, providing potential value for motion tracking during position-sensitive treatments such as radiation therapy.
PMCID:11207459
PMID: 38931494
ISSN: 1424-8220
CID: 5698062

Interaction of acetylcholine and oxytocin neuromodulation in the hippocampus

Zhang, Yiyao; Karadas, Mursel; Liu, JingJing; Gu, Xinyi; Vöröslakos, Mihály; Li, Yulong; Tsien, Richard W; Buzsáki, György
A postulated role of subcortical neuromodulators is to control brain states. Mechanisms by which different neuromodulators compete or cooperate at various temporal scales remain an open question. We investigated the interaction of acetylcholine (ACh) and oxytocin (OXT) at slow and fast timescales during various brain states. Although these neuromodulators fluctuated in parallel during NREM packets, transitions from NREM to REM were characterized by a surge of ACh but a continued decrease of OXT. OXT signaling lagged behind ACh. High ACh was correlated with population synchrony and gamma oscillations during active waking, whereas minimum ACh predicts sharp-wave ripples (SPW-Rs). Optogenetic control of ACh and OXT neurons confirmed the active role of these neuromodulators in the observed correlations. Synchronous hippocampal activity consistently reduced OXT activity, whereas inactivation of the lateral septum-hypothalamus path attenuated this effect. Our findings demonstrate how cooperative actions of these neuromodulators allow target circuits to perform specific functions.
PMID: 38537642
ISSN: 1097-4199
CID: 5644972

Synthesis and Characterization of Click Chemical Probes for Single-Cell Resolution Detection of Epichaperomes in Neurodegenerative Disorders

Bay, Sadik; Digwal, Chander S; Rodilla Martín, Ananda M; Sharma, Sahil; Stanisavljevic, Aleksandra; Rodina, Anna; Attaran, Anoosha; Roychowdhury, Tanaya; Parikh, Kamya; Toth, Eugene; Panchal, Palak; Rosiek, Eric; Pasala, Chiranjeevi; Arancio, Ottavio; Fraser, Paul E; Alldred, Melissa J; Prado, Marco A M; Ginsberg, Stephen D; Chiosis, Gabriela
Neurodegenerative disorders, including Alzheimer's disease (AD) and Parkinson's disease (PD), represent debilitating conditions with complex, poorly understood pathologies. Epichaperomes, pathologic protein assemblies nucleated on key chaperones, have emerged as critical players in the molecular dysfunction underlying these disorders. In this study, we introduce the synthesis and characterization of clickable epichaperome probes, PU-TCO, positive control, and PU-NTCO, negative control. Through comprehensive in vitro assays and cell-based investigations, we establish the specificity of the PU-TCO probe for epichaperomes. Furthermore, we demonstrate the efficacy of PU-TCO in detecting epichaperomes in brain tissue with a cellular resolution, underscoring its potential as a valuable tool for dissecting single-cell responses in neurodegenerative diseases. This clickable probe is therefore poised to address a critical need in the field, offering unprecedented precision and versatility in studying epichaperomes and opening avenues for novel insights into their role in disease pathology.
PMCID:11201208
PMID: 38927459
ISSN: 2227-9059
CID: 5733212

Shared and Specific Neural Correlates of Attention Deficit Hyperactivity Disorder and Autism Spectrum Disorder: A Meta-Analysis of 243 Task-Based Functional MRI Studies

Tamon, Hiroki; Fujino, Junya; Itahashi, Takashi; Frahm, Lennart; Parlatini, Valeria; Aoki, Yuta Y; Castellanos, Francisco Xavier; Eickhoff, Simon B; Cortese, Samuele
OBJECTIVE/UNASSIGNED:To investigate shared and specific neural correlates of cognitive functions in attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD), the authors performed a comprehensive meta-analysis and considered a balanced set of neuropsychological tasks across the two disorders. METHODS/UNASSIGNED:A broad set of electronic databases was searched up to December 4, 2022, for task-based functional MRI studies investigating differences between individuals with ADHD or ASD and typically developing control subjects. Spatial coordinates of brain loci differing significantly between case and control subjects were extracted. To avoid potential diagnosis-driven selection bias of cognitive tasks, the tasks were grouped according to the Research Domain Criteria framework, and stratified sampling was used to match cognitive component profiles. Activation likelihood estimation was used for the meta-analysis. RESULTS/UNASSIGNED:After screening 20,756 potentially relevant references, a meta-analysis of 243 studies was performed, which included 3,084 participants with ADHD (676 females), 2,654 participants with ASD (292 females), and 6,795 control subjects (1,909 females). ASD and ADHD showed shared greater activations in the lingual and rectal gyri and shared lower activations in regions including the middle frontal gyrus, the parahippocampal gyrus, and the insula. By contrast, there were ASD-specific greater and lower activations in regions including the left middle temporal gyrus and the left middle frontal gyrus, respectively, and ADHD-specific greater and lower activations in the amygdala and the global pallidus, respectively. CONCLUSIONS/UNASSIGNED:Although ASD and ADHD showed both shared and disorder-specific standardized neural activations, disorder-specific activations were more prominent than shared ones. Functional brain differences between ADHD and ASD are more likely to reflect diagnosis-related pathophysiology than bias from the selection of specific neuropsychological tasks.
PMID: 38685858
ISSN: 1535-7228
CID: 5663112

Multiomics Assessment of the Gut Microbiome in Rare Hyperoxaluric Conditions

Zaidan, Nadim; Wang, Chan; Chen, Ze; Lieske, John C; Milliner, Dawn; Seide, Barbara; Ho, Melody; Li, Huilin; Ruggles, Kelly V; Modersitzki, Frank; Goldfarb, David S; Blaser, Martin; Nazzal, Lama
INTRODUCTION/UNASSIGNED:Hyperoxaluria is a risk factor for kidney stone formation and chronic kidney disease progression. The microbiome is an important protective factor against oxalate accumulation through the activity of its oxalate-degrading enzymes (ODEs). In this cross-sectional study, we leverage multiomics to characterize the microbial community of participants with primary and enteric hyperoxaluria, as well as idiopathic calcium oxalate kidney stone (CKS) formers, focusing on the relationship between oxalate degrading functions of the microbiome. METHODS/UNASSIGNED:Patients diagnosed with type 1 primary hyperoxaluria (PH), enteric hyperoxaluria (EH), and CKS were screened for inclusion in the study. Participants completed a food frequency questionnaire recording their dietary oxalate content while fecal oxalate levels were ascertained. DNA and RNA were extracted from stool samples and sequenced. Metagenomic (MTG) and metatranscriptomic (MTT) data were processed through our bioinformatics pipelines, and microbiome diversity, differential abundance, and networks were subject to statistical analysis in relationship with oxalate levels. RESULTS/UNASSIGNED:A total of 38 subjects were recruited, including 13 healthy participants, 12 patients with recurrent CKS, 8 with PH, and 5 with EH. Urinary and fecal oxalate were significantly higher in the PH and the EH population compared to healthy controls. At the community level, alpha-diversity and beta-diversity indices were similar across all populations. The respective contributions of single bacterial species to the total oxalate degradative potential were similar in healthy and PH subjects. MTT-based network analysis identified the most interactive bacterial network in patients with PH. Patients with EH had a decreased abundance of multiple major oxalate degraders. CONCLUSION/UNASSIGNED:The composition and inferred activity of oxalate-degrading microbiota were differentially associated with host clinical conditions. Identifying these changes improves our understanding of the relationships between dietary constituents, microbiota, and oxalate homeostasis, and suggests new therapeutic approaches protecting against hyperoxaluria.
PMCID:11184406
PMID: 38899198
ISSN: 2468-0249
CID: 5672212

DNA mismatch and damage patterns revealed by single-molecule sequencing

Liu, Mei Hong; Costa, Benjamin M; Bianchini, Emilia C; Choi, Una; Bandler, Rachel C; Lassen, Emilie; Grońska-Pęski, Marta; Schwing, Adam; Murphy, Zachary R; Rosenkjær, Daniel; Picciotto, Shany; Bianchi, Vanessa; Stengs, Lucie; Edwards, Melissa; Nunes, Nuno Miguel; Loh, Caitlin A; Truong, Tina K; Brand, Randall E; Pastinen, Tomi; Wagner, J Richard; Skytte, Anne-Bine; Tabori, Uri; Shoag, Jonathan E; Evrony, Gilad D
Mutations accumulate in the genome of every cell of the body throughout life, causing cancer and other diseases1,2. Most mutations begin as nucleotide mismatches or damage in one of the two strands of the DNA before becoming double-strand mutations if unrepaired or misrepaired3,4. However, current DNA-sequencing technologies cannot accurately resolve these initial single-strand events. Here we develop a single-molecule, long-read sequencing method (Hairpin Duplex Enhanced Fidelity sequencing (HiDEF-seq)) that achieves single-molecule fidelity for base substitutions when present in either one or both DNA strands. HiDEF-seq also detects cytosine deamination-a common type of DNA damage-with single-molecule fidelity. We profiled 134 samples from diverse tissues, including from individuals with cancer predisposition syndromes, and derive from them single-strand mismatch and damage signatures. We find correspondences between these single-strand signatures and known double-strand mutational signatures, which resolves the identity of the initiating lesions. Tumours deficient in both mismatch repair and replicative polymerase proofreading show distinct single-strand mismatch patterns compared to samples that are deficient in only polymerase proofreading. We also define a single-strand damage signature for APOBEC3A. In the mitochondrial genome, our findings support a mutagenic mechanism occurring primarily during replication. As double-strand DNA mutations are only the end point of the mutation process, our approach to detect the initiating single-strand events at single-molecule resolution will enable studies of how mutations arise in a variety of contexts, especially in cancer and ageing.
PMID: 38867045
ISSN: 1476-4687
CID: 5669192