Searched for: school:SOM
Department/Unit:Cell Biology
Distinct Roles of Different Presynaptic and Postsynaptic NCAM Isoforms in Early Motoneuron-Myotube Interactions Required for Functional Synapse Formation
Hata, Katsusuke; Maeno-Hikichi, Yuka; Yumoto, Norihiro; Burden, Steven J; Landmesser, Lynn T
The neural cell adhesion molecule (NCAM) is expressed both presynaptically and postsynaptically during neuromuscular junction formation. Genetic deletion in mice of all three isoforms (180, 140, and 120 kDa), or just the 180 isoform, suggested that different isoforms played distinct roles in synaptic maturation. Here we characterized in mice of either sex the earliest adhesive contacts between the growth cones of motoneurons and myotubes and their subsequent maturation into functional synapses in cocultures of motoneurons and myotubes, which expressed their normal complement of NCAM isoforms, or were lacking all isoforms either presynaptically or postsynaptically. Growth cone contact with +/+ mouse myotubes resulted in immediate adhesive contacts and the rapid downregulation of growth cone motility. When contacting NCAM-/- myotubes, growth cones touched and retracted/collapsed multiple times and failed to form stable contacts, even after 10 h. Exogenous expression in myotubes of either the 180 or 140 isoform, but not the 120 kDa isoform, rescued the rapid formation of stable contacts, the accumulation of presynaptic and postsynaptic molecules, and functional transmission. When NCAM was absent only in motoneurons, growth cones did not retract upon myotube contact, but, since their motility was not downregulated, they grew off the ends of the myotubes, failing to form synapses. The agrin receptor Lrp4 was strongly downregulated in NCAM-negative myotubes, and motoneuron growth cones did not make stable contacts with Lrp4-negative myotubes. These studies have identified novel roles for presynaptic and postsynaptic NCAM in mediating early cell-cell interactions required for synapse formation.SIGNIFICANCE STATEMENT Although many molecular signals needed to form the functionally effective neuromuscular synapses required for normal movement have been described, the earliest signals that let motoneuron growth cones make stable adhesive contacts with myotubes and cease motility are not well understood. Using dynamic imaging of motoneuron-myotube cocultures, we show that NCAM is required on both the growth cone and myotube and that different NCAM isoforms mediate initial adhesion and the downregulation of growth cone motility. The agrin receptor Lrp4 was also essential for initial adhesive contacts and was downregulated on NCAM-/- myotubes. Our identification of novel roles for NCAM and Lrp4 and possible interactions between them in transforming motile growth cones into stable contacts opens interesting new avenues for exploration.
PMCID:5761622
PMID: 29175953
ISSN: 1529-2401
CID: 2905982
The primary role of zebrafishnanogis in extra-embryonic tissue
Gagnon, James A; Obbad, Kamal; Schier, Alexander F
The role of the zebrafish transcription factor Nanog has been controversial. It has been suggested that Nanog is primarily required for the proper formation of the extra-embryonic yolk syncytial layer (YSL) and only indirectly regulates gene expression in embryonic cells. In an alternative scenario, Nanog has been proposed to directly regulate transcription in embryonic cells during zygotic genome activation. To clarify the roles of Nanog, we performed a detailed analysis of zebrafishnanogmutants. Whereas zygoticnanogmutants survive to adulthood, maternal-zygotic (MZnanog) and maternal mutants exhibit developmental arrest at the blastula stage. In the absence of Nanog, YSL formation and epiboly are abnormal, embryonic tissue detaches from the yolk, and the expression of dozens of YSL and embryonic genes is reduced. Epiboly defects can be rescued by generating chimeric embryos of MZnanogembryonic tissue with wild-type vegetal tissue that includes the YSL and yolk cell. Notably, cells lacking Nanog readily respond to Nodal signals and when transplanted into wild-type hosts proliferate and contribute to embryonic tissues and adult organs from all germ layers. These results indicate that zebrafish Nanog is necessary for proper YSL development but is not directly required for embryonic cell differentiation.
PMCID:5825865
PMID: 29180571
ISSN: 1477-9129
CID: 2986332
Anatomical, Physiological, and Functional Diversity of Adipose Tissue
Zwick, Rachel K; Guerrero-Juarez, Christian F; Horsley, Valerie; Plikus, Maksim V
Adipose tissue depots can exist in close association with other organs, where they assume diverse, often non-traditional functions. In stem cell-rich skin, bone marrow, and mammary glands, adipocytes signal to and modulate organ regeneration and remodeling. Skin adipocytes and their progenitors signal to hair follicles, promoting epithelial stem cell quiescence and activation, respectively. Hair follicles signal back to adipocyte progenitors, inducing their expansion and regeneration, as in skin scars. In mammary glands and heart, adipocytes supply lipids to neighboring cells for nutritional and metabolic functions, respectively. Adipose depots adjacent to skeletal structures function to absorb mechanical shock. Adipose tissue near the surface of skin and intestine senses and responds to bacterial invasion, contributing to the body's innate immune barrier. As the recognition of diverse adipose depot functions increases, novel therapeutic approaches centered on tissue-specific adipocytes are likely to emerge for a range of cancers and regenerative, infectious, and autoimmune disorders.
PMCID:6050204
PMID: 29320711
ISSN: 1932-7420
CID: 5873712
Systemic and local cues drive neural stem cell niche remodelling during neurogenesis in Drosophila
Spéder, Pauline; Brand, Andrea H
Successful neurogenesis requires adequate proliferation of neural stem cells (NSCs) and their progeny, followed by neuronal differentiation, maturation and survival. NSCs inhabit a complex cellular microenvironment, the niche, which influences their behaviour. To ensure sustained neurogenesis, niche cells must respond to extrinsic, environmental changes whilst fulfilling the intrinsic requirements of the neurogenic program and adapting their roles accordingly. However, very little is known about how different niche cells adjust their properties to such inputs. Here, we show that nutritional and NSC-derived signals induce the remodelling of Drosophila cortex glia, adapting this glial niche to the evolving needs of NSCs. First, nutrition-induced activation of PI3K/Akt drives the cortex glia to expand their membrane processes. Second, when NSCs emerge from quiescence to resume proliferation, they signal to glia to promote membrane remodelling and the formation of a bespoke structure around each NSC lineage. The remodelled glial niche is essential for newborn neuron survival.
PMCID:5754201
PMID: 29299997
ISSN: 2050-084x
CID: 5193372
Platelet-Derived MRP-14 Induces Monocyte Activation in Patients With Symptomatic Peripheral Artery Disease
Dann, Rebecca; Hadi, Tarik; Montenont, Emilie; Boytard, Ludovic; Alebrahim, Dornaszadat; Feinstein, Jordyn; Allen, Nicole; Simon, Russell; Barone, Krista; Uryu, Kunihiro; Guo, Yu; Rockman, Caron; Ramkhelawon, Bhama; Berger, Jeffrey S
BACKGROUND:Peripheral artery disease (PAD), a diffuse manifestation of atherothrombosis, is a major cardiovascular threat. Although platelets are primary mediators of atherothrombosis, their role in the pathogenesis of PAD remains unclear. OBJECTIVES/OBJECTIVE:The authors sought to investigate the role of platelets in a cohort of symptomatic PAD. METHODS:The authors profiled platelet activity, mRNA, and effector roles in patients with symptomatic PAD and in healthy controls. Patients with PAD and carotid artery stenosis were recruited into ongoing studies (NCT02106429 and NCT01897103) investigating platelet activity, platelet RNA, and cardiovascular disease. RESULTS:Platelet RNA sequence profiling mapped a robust up-regulation of myeloid-related protein (MRP)-14 mRNA, a potent calcium binding protein heterodimer, in PAD. Circulating activated platelets were enriched with MRP-14 protein, which augmented the expression of the adhesion mediator, P-selectin, thereby promoting monocyte-platelet aggregates. Electron microscopy confirmed the firm interaction of platelets with monocytes in vitro and colocalization of macrophages with MRP-14 confirmed their cross talk in atherosclerotic manifestations of PAD in vivo. Platelet-derived MRP-14 was channeled to monocytes, thereby fueling their expression of key PAD lesional hallmarks and increasing their directed locomotion, which were both suppressed in the presence of antibody-mediated blockade. Circulating MRP-14 was heightened in the setting of PAD, significantly correlated with PAD severity, and was associated with incident limb events. CONCLUSIONS:The authors identified a heightened platelet activity profile and unraveled a novel immunomodulatory effector role of platelet-derived MRP-14 in reprograming monocyte activation in symptomatic PAD. (Platelet Activity in Vascular Surgery and Cardiovascular Events [PACE]; NCT02106429; and Platelet Activity in Vascular Surgery for Thrombosis and Bleeding [PIVOTAL]; NCT01897103).
PMCID:5882198
PMID: 29301628
ISSN: 1558-3597
CID: 2898412
High-resolution mapping of R loops [Editorial]
Todorovic, Vesna
Two novel techniques refine genome-wide mapping of R loops. ISI:000423152300009
ISSN: 1548-7091
CID: 3547852
Tyrosine Kinase Inhibitor Induced Lung Injury Masking Accelerated Repopulation of Metastatic Non-Small Cell Lung Cancer [Meeting Abstract]
Reddy, V.; Hossain, T.; Munger, J.; Parnia, S.
ISI:000449980303507
ISSN: 1073-449x
CID: 3512952
Route of Antigen Presentation Can Determine the Selection of Foxp3-Dependent or Foxp3-Independent Dominant Immune Tolerance
Agua-Doce, Ana; Caridade, Marta; Oliveira, Vanessa G; Bergman, Lisa; Lafaille, Maria C; Lafaille, Juan J; Demengeot, Jocelyne; Graca, Luis
It has been shown that dominant tolerance, namely in transplantation, requires Foxp3+ regulatory T cells. Although most tolerance-inducing regimens rely on regulatory T cells, we found that induction of tolerance to proteins in aluminum hydroxide can be achieved in Foxp3-deficient mice using nondepleting anti-CD4 Abs. This type of tolerance is Ag specific, and tolerant mice retain immune competence to respond to unrelated Ags. We demonstrated with chicken OVA-specific TCR-transgenic mice that the same tolerizing protocol (CD4 blockade) and the same target Ag (OVA) achieves Foxp3-dependent transplantation tolerance to OVA-expressing skin grafts, but Foxp3-independent tolerance when the Ag is provided as OVA-aluminum hydroxide. In the latter case, we found that tolerance induction triggered recessive mechanisms leading to elimination of effector cells and, simultaneously, a dominant mechanism associated with the emergence of an anergic and regulatory CTLA-4+IL-2lowFoxp3- T cell population, where the tolerance state is IL-10 dependent. Such Foxp3-independent mechanisms can improve the efficacy of tolerance-inducing protocols.
PMID: 29167234
ISSN: 1550-6606
CID: 2922172
An Improved Humanized Mouse Model for Excisional Wound Healing Using Double Transgenic Mice
Hu, Michael S; Cheng, Justin; Borrelli, Mimi R; Leavitt, Tripp; Walmsley, Graham G; Zielins, Elizabeth R; Hong, Wan Xing; Cheung, Alexander T M; Duscher, Dominik; Maan, Zeshaan N; Irizarry, Dre M; Stephan, Brad; Parsa, Fereydoun Don; Wan, Derrick C; Gurtner, Geoffrey C; Lorenz, Hermann Peter; Longaker, Michael T
Objective:
PMCID:5770115
PMID: 29344430
ISSN: 2162-1918
CID: 2988342
Causal data science for financial stress testing
Gao, Gelin; Mishra, Bud; Ramazzotti, Daniele
The most recent financial upheavals have cast doubt on the adequacy of some of the conventional quantitative risk management strategies, such as VaR (Value at Risk), in many common situations. Consequently, there has been an increasing need for verisimilar financial stress testings, namely simulating and analyzing financial portfolios in extreme, albeit rare scenarios. Unlike conventional risk management which exploits statistical correlations among financial instruments, here we focus our analysis on the notion of probabilistic causation, which is embodied by Suppes-Bayes Causal Networks (SBCNs); SBCNs are probabilistic graphical models that have many attractive features in terms of more accurate causal analysis for generating financial stress scenarios. In this paper, we present a novel approach for conducting stress testing of financial portfolios based on SBCNs in combination with classical machine learning classification tools. The resulting method is shown to be capable of correctly discovering the causal relationships among financial factors that affect the portfolios and thus, simulating stress testing scenarios with a higher accuracy and lower computational complexity than conventional Monte Carlo simulations.
SCOPUS:85045340389
ISSN: 1877-7503
CID: 3121942