Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Neuroscience Institute

Total Results:

13358


Selective Synthesis of Divergolide I

Terwilliger, Daniel W; Trauner, Dirk
Divergolide I (1) is a naphthoquinone ansamycin that exhibits broad antibacterial activity. Its tetracyclic ring system is believed to be biosynthetically assembled via ring contraction of a macrocyclic precursor (proto-divergolide) that is both a macrolactone and a macrolactam. We here report a convergent and enantioselective synthesis that delivers the target molecule in less than 20 linear steps. Our work establishes the absolute configuration of divergolide I, confirms its relative configuration, and demonstrates that the biomimetic cyclization of a proto-divergolide can be surprisingly selective.
PMID: 29376358
ISSN: 1520-5126
CID: 3000052

Author Correction: Low frequency transcranial electrical stimulation does not entrain sleep rhythms measured by human intracranial recordings [Correction]

Lafon, Belen; Henin, Simon; Huang, Yu; Friedman, Daniel; Melloni, Lucia; Thesen, Thomas; Doyle, Werner; Buzsaki, Gyorgy; Devinsky, Orrin; Parra, Lucas C; Liu, Anli
It has come to our attention that we did not specify whether the stimulation magnitudes we report in this Article are peak amplitudes or peak-to-peak. All references to intensity given in mA in the manuscript refer to peak-to-peak amplitudes, except in Fig. 2, where the model is calibrated to 1 mA peak amplitude, as stated. In the original version of the paper we incorrectly calibrated the computational models to 1 mA peak-to-peak, rather than 1 mA peak amplitude. This means that we divided by a value twice as large as we should have. The correct estimated fields are therefore twice as large as shown in the original Fig. 2 and Supplementary Figure 11. The corrected figures are now properly calibrated to 1 mA peak amplitude. Furthermore, the sentence in the first paragraph of the Results section 'Intensity ranged from 0.5 to 2.5 mA (current density 0.125-0.625 mA mA/cm2), which is stronger than in previous reports', should have read 'Intensity ranged from 0.5 to 2.5 mA peak to peak (peak current density 0.0625-0.3125 mA/cm2), which is stronger than in previous reports.' These errors do not affect any of the Article's conclusions.
PMCID:5830401
PMID: 29491347
ISSN: 2041-1723
CID: 2965562

Optical Control of a Biological Reaction-Diffusion System

Glock, Philipp; Broichhagen, Johannes; Kretschmer, Simon; Blumhardt, Philipp; Mücksch, Jonas; Trauner, Dirk; Schwille, Petra
Patterns formed by reaction and diffusion are the foundation for many phenomena in biology. However, the experimental study of reaction-diffusion (R-D) systems has so far been dominated by chemical oscillators, for which many tools are available. In this work, we developed a photoswitch for the Min system of Escherichia coli, a versatile biological in vitro R-D system consisting of the antagonistic proteins MinD and MinE. A MinE-derived peptide of 19 amino acids was covalently modified with a photoisomerizable crosslinker based on azobenzene to externally control peptide-mediated depletion of MinD from the membrane. In addition to providing an on-off switch for pattern formation, we achieve frequency-locked resonance with a precise 2D spatial memory, thus allowing new insights into Min protein action on the membrane. Taken together, we provide a tool to study phenomena in pattern formation using biological agents.
PMID: 29266672
ISSN: 1521-3773
CID: 2946402

Normal aging induces A1-like astrocyte reactivity

Clarke, Laura E; Liddelow, Shane A; Chakraborty, Chandrani; Münch, Alexandra E; Heiman, Myriam; Barres, Ben A
The decline of cognitive function occurs with aging, but the mechanisms responsible are unknown. Astrocytes instruct the formation, maturation, and elimination of synapses, and impairment of these functions has been implicated in many diseases. These findings raise the question of whether astrocyte dysfunction could contribute to cognitive decline in aging. We used the Bac-Trap method to perform RNA sequencing of astrocytes from different brain regions across the lifespan of the mouse. We found that astrocytes have region-specific transcriptional identities that change with age in a region-dependent manner. We validated our findings using fluorescence in situ hybridization and quantitative PCR. Detailed analysis of the differentially expressed genes in aging revealed that aged astrocytes take on a reactive phenotype of neuroinflammatory A1-like reactive astrocytes. Hippocampal and striatal astrocytes up-regulated a greater number of reactive astrocyte genes compared with cortical astrocytes. Moreover, aged brains formed many more A1 reactive astrocytes in response to the neuroinflammation inducer lipopolysaccharide. We found that the aging-induced up-regulation of reactive astrocyte genes was significantly reduced in mice lacking the microglial-secreted cytokines (IL-1α, TNF, and C1q) known to induce A1 reactive astrocyte formation, indicating that microglia promote astrocyte activation in aging. Since A1 reactive astrocytes lose the ability to carry out their normal functions, produce complement components, and release a toxic factor which kills neurons and oligodendrocytes, the aging-induced up-regulation of reactive genes by astrocytes could contribute to the cognitive decline in vulnerable brain regions in normal aging and contribute to the greater vulnerability of the aged brain to injury.
PMCID:5828643
PMID: 29437957
ISSN: 1091-6490
CID: 2958252

Preserving neuromuscular synapses in ALS by stimulating MuSK with a therapeutic agonist antibody

Cantor, Sarah; Zhang, Wei; Delestrée, Nicolas; Remédio, Leonor; Mentis, George Z; Burden, Steven J
In amyotrophic lateral sclerosis (ALS) and animal models of ALS, includingSOD1-G93Amice, disassembly of the neuromuscular synapse precedes motor neuron loss and is sufficient to cause a decline in motor function that culminates in lethal respiratory paralysis. We treatedSOD1-G93Amice with an agonist antibody to MuSK, a receptor tyrosine kinase essential for maintaining neuromuscular synapses, to determine whether increasing muscle retrograde signaling would slow nerve terminal detachment from muscle. The agonist antibody, delivered after disease onset, slowed muscle denervation, promoting motor neuron survival, improving motor system output, and extending the lifespan ofSOD1-G93Amice. These findings suggest a novel therapeutic strategy for ALS, using an antibody format with clinical precedence, which targets a pathway essential for maintaining attachment of nerve terminals to muscle.
PMCID:5837562
PMID: 29460776
ISSN: 2050-084x
CID: 2963642

A role for tau in learning, memory and synaptic plasticity

Biundo, Fabrizio; Del Prete, Dolores; Zhang, Hong; Arancio, Ottavio; D'Adamio, Luciano
Tau plays a pivotal role in the pathogenesis of neurodegenerative disorders: mutations in the gene encoding for tau (MAPT) are linked to Fronto-temporal Dementia (FTD) and hyper-phosphorylated aggregates of tau forming neurofibrillary tangles (NFTs) that constitute a pathological hallmark of Alzheimer disease (AD) and FTD. Accordingly, tau is a favored therapeutic target for the treatment of these diseases. Given the criticality of tau to dementia's pathogenesis and therapy, it is important to understand the physiological function of tau in the central nervous system. Analysis of Mapt knock out (Mapt-/-) mice has yielded inconsistent results. Some studies have shown that tau deletion does not alter memory while others have described synaptic plasticity and memory alterations in Mapt-/- mice. To help clarifying these contrasting results, we analyzed a distinct Mapt-/- model on a B6129PF3/J genetic background. We found that tau deletion leads to aging-dependent short-term memory deficits, hyperactivity and synaptic plasticity defects. In contrast, Mapt+/- mice only showed a mild short memory deficit in the novel object recognition task. Thus, while tau is important for normal neuronal functions underlying learning and memory, partial reduction of tau expression may have fractional deleterious effects.
PMID: 29453339
ISSN: 2045-2322
CID: 3372232

Controlling learning and epilepsy together

Scharfman, Helen E
PMCID:6044721
PMID: 29449476
ISSN: 1095-9203
CID: 2958042

Diversity and connectivity of layer 5 somatostatin-expressing interneurons in the mouse barrel cortex

Maximiliano José, Nigro; Hashikawa, Yoshiko; Rudy, Bernardo
Inhibitory interneurons represent 10-15% of the neurons in the somatosensory cortex, and their activity powerfully shapes sensory processing. Three major groups of GABAergic interneurons have been defined according to developmental, molecular, morphological, electrophysiological, and synaptic features. Dendritic-targeting somatostatin-expressing interneurons (SST-INs) have been shown to display diverse morphological, electrophysiological and molecular properties and activity patterns in vivo. However, the correlation between these properties and SST-IN subtype is unclear. In this study we aimed to correlate the morphological diversity of layer 5 (L5) SST-INs with their electrophysiological and molecular diversity in mice of either sex. Our morphological analysis demonstrated the existence of three subtypes of L5 SST-INs with distinct electrophysiological properties: T-shaped Martinotti cells innervate L1, and are low-threshold spiking; fanning-out Martinotti cells innervate L2/3 and the lower half of L1, and show adapting firing patterns; non-Martinotti cells innervate L4, and show a quasi-fast spiking firing pattern. We estimated the proportion of each subtype in L5 and found that T-shaped Martinotti, fanning-out Martinotti and Non-Martinotti cells represent ∼10, ∼50 and ∼40% of L5 SST-INs, respectively. Lastly we examined the connectivity between the three SST-IN subtypes and L5 pyramidal cells (PCs). We found that L5 T-shapped Martinotti cells inhibit the L1 apical tuft of nearby PCs; L5 fanning-out Martinotti cells also inhibit nearby PCs but they target the dendrite mainly in L2/3. On the other hand non-Martinotti cells inhibit the dendrites of L4 neurons while avoiding L5 PCs. Our data suggest that morphologically distinct SST-INs gate different excitatory inputs in the barrel cortex.SIGNIFICANCE STATEMENTMorphologically diverse layer 5 SST-INs show different patterns of activity in behaving animals. However, little is known about the abundance and connectivity of each morphological type and the correlation between morphological subtype and spiking properties. We demonstrate a correlation between the morphological and electrophysiological diversity of layer 5 SST-INs. Based on these findings we built a classifier to infer the abundance of each morphological subtype. Lastly, using paired recordings combined with morphological analysis, we investigated the connectivity of each morphological subtype. Our data suggest that, by targeting different cell types and cellular compartments, morphologically diverse SST-INs might gate different excitatory inputs in the mouse barrel cortex.
PMCID:5815450
PMID: 29326172
ISSN: 1529-2401
CID: 2906352

A Shared Vision for Machine Learning in Neuroscience

Vu, Mai-Anh T; Adali, Tulay; Ba, Demba; Buzsaki, Gyorgy; Carlson, David; Heller, Katherine; Liston, Conor; Rudin, Cynthia; Sohal, Vikaas S; Widge, Alik S; Mayberg, Helen S; Sapiro, Guillermo; Dzirasa, Kafui
With ever-increasing advancements in technology, neuroscientists are able to collect data in greater volumes and with finer resolution. The bottleneck in understanding how the brain works is consequently shifting away from the amount and type of data we can collect and toward what we actually do with the data. There has been a growing interest in leveraging this vast volume of data across levels of analysis, measurement techniques, and experimental paradigms to gain more insight into brain function. Such efforts are visible at an international scale, with the emergence of big data neuroscience initiatives, such as the BRAIN initiative (Bargmann et al., 2014), the Human Brain Project, the Human Connectome Project, and the National Institute of Mental Health's Research Domain Criteria initiative. With these large-scale projects, much thought has been given to data-sharing across groups (Poldrack and Gorgolewski, 2014; Sejnowski et al., 2014); however, even with such data-sharing initiatives, funding mechanisms, and infrastructure, there still exists the challenge of how to cohesively integrate all the data. At multiple stages and levels of neuroscience investigation, machine learning holds great promise as an addition to the arsenal of analysis tools for discovering how the brain works.
PMCID:5815449
PMID: 29374138
ISSN: 1529-2401
CID: 3197872

Activity Regulates Cell Death within Cortical Interneurons through a Calcineurin-Dependent Mechanism

Priya, Rashi; Paredes, Mercedes Francisca; Karayannis, Theofanis; Yusuf, Nusrath; Liu, Xingchen; Jaglin, Xavier; Graef, Isabella; Alvarez-Buylla, Arturo; Fishell, Gord
We demonstrate that cortical interneurons derived from ventral eminences, including the caudal ganglionic eminence, undergo programmed cell death. Moreover, with the exception of VIP interneurons, this occurs in a manner that is activity-dependent. In addition, we demonstrate that, within interneurons, Calcineurin, a calcium-dependent protein phosphatase, plays a critical role in sequentially linking activity to maturation (E15-P5) and survival (P5-P20). Specifically, embryonic inactivation of Calcineurin results in a failure of interneurons to morphologically mature and prevents them from undergoing apoptosis. By contrast, early postnatal inactivation of Calcineurin increases apoptosis. We conclude that Calcineurin serves a dual role of promoting first the differentiation of interneurons and, subsequently, their survival.
PMID: 29444424
ISSN: 2211-1247
CID: 2957952