Searched for: school:SOM
Department/Unit:Cell Biology
RNA-DamID reveals cell-type-specific binding of roX RNAs at chromatin-entry sites
Cheetham, Seth W; Brand, Andrea H
Thousands of long noncoding RNAs (lncRNAs) have been identified in eukaryotic genomes, many of which are expressed in spatially and temporally restricted patterns. Nonetheless, the roles of the majority of these transcripts are still unknown. One of the mechanisms by which lncRNAs function is through the modulation of chromatin states. To assess the functions of lncRNAs, we developed RNA-DamID, a novel approach that detects lncRNA-genome interactions in a cell-type-specific manner in vivo with high sensitivity and accuracy. Identifying the cell-type-specific genome occupancy of lncRNAs is vital to understanding their mechanisms of action in development and disease. We used RNA-DamID to investigate targeting of the lncRNAs in the Drosophila dosage-compensation complex (DCC) and show that initial targeting is cell-type specific.
PMCID:5813796
PMID: 29323275
ISSN: 1545-9985
CID: 5193382
PHD-2 Suppression in Mesenchymal Stromal Cells Enhances Wound Healing
Ko, Sae Hee; Nauta, Allison C; Morrison, Shane D; Hu, Michael S; Zimmermann, Andrew S; Chung, Michael T; Glotzbach, Jason P; Wong, Victor W; Walmsley, Graham G; Peter Lorenz, H; Chan, Denise A; Gurtner, Geoffrey C; Giaccia, Amato J; Longaker, Michael T
BACKGROUND:Cell therapy with mesenchymal stromal cells is a promising strategy for tissue repair. Restoration of blood flow to ischemic tissues is a key step in wound repair, and mesenchymal stromal cells have been shown to be proangiogenic. Angiogenesis is critically regulated by the hypoxia-inducible factor (HIF) superfamily, consisting of transcription factors targeted for degradation by prolyl hydroxylase domain (PHD)-2. The aim of this study was to enhance the proangiogenic capability of mesenchymal stromal cells and to use these modified cells to promote wound healing. METHODS:Mesenchymal stromal cells harvested from mouse bone marrow were transduced with short hairpin RNA (shRNA) against PHD-2; control cells were transduced with scrambled shRNA (shScramble) construct. Gene expression quantification, human umbilical vein endothelial cell tube formation assays, and wound healing assays were used to assess the effect of PHD knockdown mesenchymal stromal cells on wound healing dynamics. RESULTS:PHD-2 knockdown mesenchymal stromal cells overexpressed HIF-1α and multiple angiogenic factors compared to control (p < 0.05). Human umbilical vein endothelial cells treated with conditioned medium from PHD-2 knockdown mesenchymal stromal cells exhibited increased formation of capillary-like structures and enhanced migration compared with human umbilical vein endothelial cells treated with conditioned medium from shScramble-transduced mesenchymal stromal cells (p < 0.05). Wounds treated with PHD-2 knockdown mesenchymal stromal cells healed at a significantly accelerated rate compared with wounds treated with shScramble mesenchymal stromal cells (p < 0.05). Histologic studies revealed increased blood vessel density and increased cellularity in the wounds treated with PHD-2 knockdown mesenchymal stromal cells (p < 0.05). CONCLUSIONS:Silencing PHD-2 in mesenchymal stromal cells augments their proangiogenic potential in wound healing therapy. This effect appears to be mediated by overexpression of HIF family transcription factors and up-regulation of multiple downstream angiogenic factors.
PMCID:5747314
PMID: 29280872
ISSN: 1529-4242
CID: 2987152
Mechanisms of primary resistance to cancer immunotherapies [Meeting Abstract]
Moogk, D; Li, K; Yuan, Z; Zhong, S; Yu, Z; Liadi, I; Rittase, W; Fang, V; Dougherty, J; Perez-Garcia, A; Osman, I; Varadarajan, N; Restifo, N P; Frey, A; Zhu, C; Krogsgaard, M
Background: Although much clinical progress has been made in harnessing the immune system to recognize and target cancer, there is still a significant lack of an understanding of how tumors evade immune recognition and the mechanisms that drive tumor resistance to both T cell and checkpoint blockade immunotherapy. Our objective is to understand how tumor-mediated signaling through inhibitory receptors, including PD-1, combine to affect the process of T cell recognition of tumor antigen and activation signaling, with the goal of understanding the basis of resistance to PD-1 blockade and the potential identification of new molecular targets to enable T cells to overcome dysfunction mediated by multiple inhibitory receptors.
Methods and Results: We show that Lck activity affects T cell sensitivity and influences the probability of inducing effector function [1]. Under non-activating conditions, Lck and Shp-1 phosphorylation and activity vary based on CD8+ memory T cell phenotype. Shp-1 interaction with Lck under non-activation conditions can also vary, as suggested by our results showing decreased Shp-1 S591 phosphorylation, which affects Shp-1 localization and correlates with increased Shp-1 colocalization with Lck. Further, we showed that Shp-1 directly influences Lck activity under non-activating conditions, as inhibition of Shp-1 leads to increased Lck activity. Importantly, inhibition of Shp- 1/2, a major mediator of PD-1 signaling, targeting CD28 and Lck [2], prior to activation leads to increased T cell cytotoxic effector function. Our proteomics-based analysis of patient T cells identified both mediators of PD-1 signaling and signaling components and pathways associated with blockade resistance. It has generally been thought that TCR and CD8 binding depend mainly on their ectodomain interactions with pMHC. We have shown, however, that Lck-CD8 binding [3] and Lck activity [4] are required for upregulated CD8 binding to prebound TCR-pMHC complex. Therefore, the cytoplasmic associations of Lck with CD8 and Zap-70, as well as CD3 with Zap-70 may influence formation and stability of the TCRpMHCCD8 complex. To determine the mechanistic basis of PD-1 inhibition of TCR-pMHCCD8 binding we utilized 2D affinity combined with Biomembrane Force Probe (BFP) measurements[5, 6] and showed that PD-1 directly suppresses TCR pMHCCD8 binding. Our data also revealed that TCR-pMHC binding was independent of PD-1-PD-L1, but TCRpMHCCD8 binding was suppressed by PD-1-PD-L1 binding demonstrating negative cooperativity, as fewer bonds formed than the sum of bonds formed by each interaction alone.
Conclusion(s): Together, our results show that the activities of TCRproximal signaling components affect T cell mechanosensing and sensitivity at the earliest stages of antigen recognition and are influenced by PD-1. Targeting these interactions may enhance tumor-specific T cell sensitivity for cancer immunotherapy and understanding the basis of resistance to PD-1 blockade to potentially allow identification of new molecular targets to enable T cells to overcome dysfunction mediated by multiple inhibitory receptors
EMBASE:627349888
ISSN: 1479-5876
CID: 3831912
Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study
Fan, Xiaozhou; Alekseyenko, Alexander V; Wu, Jing; Peters, Brandilyn A; Jacobs, Eric J; Gapstur, Susan M; Purdue, Mark P; Abnet, Christian C; Stolzenberg-Solomon, Rachael; Miller, George; Ravel, Jacques; Hayes, Richard B; Ahn, Jiyoung
OBJECTIVE: A history of periodontal disease and the presence of circulating antibodies to selected oral pathogens have been associated with increased risk of pancreatic cancer; however, direct relationships of oral microbes with pancreatic cancer have not been evaluated in prospective studies. We examine the relationship of oral microbiota with subsequent risk of pancreatic cancer in a large nested case-control study. DESIGN: We selected 361 incident adenocarcinoma of pancreas and 371 matched controls from two prospective cohort studies, the American Cancer Society Cancer Prevention Study II and the National Cancer Institute Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. From pre-diagnostic oral wash samples, we characterised the composition of the oral microbiota using bacterial 16S ribosomal RNA (16S rRNA) gene sequencing. The associations between oral microbiota and risk of pancreatic cancer, controlling for the random effect of cohorts and other covariates, were examined using traditional and L1-penalised least absolute shrinkage and selection operator logistic regression. RESULTS: Carriage of oral pathogens, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, were associated with higher risk of pancreatic cancer (adjusted OR for presence vs absence=1.60 and 95% CI 1.15 to 2.22; OR=2.20 and 95% CI 1.16 to 4.18, respectively). Phylum Fusobacteria and its genus Leptotrichia were associated with decreased pancreatic cancer risk (OR per per cent increase of relative abundance=0.94 and 95% CI 0.89 to 0.99; OR=0.87 and 95% CI 0.79 to 0.95, respectively). Risks related to these phylotypes remained after exclusion of cases that developed within 2 years of sample collection, reducing the likelihood of reverse causation in this prospective study. CONCLUSIONS: This study provides supportive evidence that oral microbiota may play a role in the aetiology of pancreatic cancer.
PMCID:5607064
PMID: 27742762
ISSN: 1468-3288
CID: 2278642
Glass promotes the differentiation of neuronal and non-neuronal cell types in the Drosophila eye
Morrison, Carolyn A; Chen, Hao; Cook, Tiffany; Brown, Stuart; Treisman, Jessica E
Transcriptional regulators can specify different cell types from a pool of equivalent progenitors by activating distinct developmental programs. The Glass transcription factor is expressed in all progenitors in the developing Drosophila eye, and is maintained in both neuronal and non-neuronal cell types. Glass is required for neuronal progenitors to differentiate as photoreceptors, but its role in non-neuronal cone and pigment cells is unknown. To determine whether Glass activity is limited to neuronal lineages, we compared the effects of misexpressing it in neuroblasts of the larval brain and in epithelial cells of the wing disc. Glass activated overlapping but distinct sets of genes in these neuronal and non-neuronal contexts, including markers of photoreceptors, cone cells and pigment cells. Coexpression of other transcription factors such as Pax2, Eyes absent, Lozenge and Escargot enabled Glass to induce additional genes characteristic of the non-neuronal cell types. Cell type-specific glass mutations generated in cone or pigment cells using somatic CRISPR revealed autonomous developmental defects, and expressing Glass specifically in these cells partially rescued glass mutant phenotypes. These results indicate that Glass is a determinant of organ identity that acts in both neuronal and non-neuronal cells to promote their differentiation into functional components of the eye.
PMCID:5783423
PMID: 29324767
ISSN: 1553-7404
CID: 2906402
Preparation of Neonatal Rat Schwann Cells and Embryonic Dorsal Root Ganglia Neurons for In Vitro Myelination Studies
Maurel, Patrice
The ability to understand in great details, at the molecular level, the process of myelination in the peripheral nervous system (PNS) is, in no minor part, due to the availability of an in vitro culture model of PNS myelination. This culture system is based on the ability to prepare large population of highly purified Schwann cells and dorsal root ganglia neurons that, once co-cultured, can be driven to form in vitro well-defined myelinated axon units. In this chapter, we present our detailed protocols to establish these cell cultures that are derived from modifications of procedures developed 35-40Â years ago.
PMID: 29546698
ISSN: 1940-6029
CID: 2993152
Establishment of a Modified Collagen-Induced Arthritis Mouse Model to Investigate the Anti-inflammatory Activity of Progranulin in Inflammatory Arthritis
Wei, Jian-Lu; Liu, Chuan-Ju
Progranulin (PGRN) was found to play an anti-inflammatory and protective role in both inflammatory and degenerative arthritis (Tang et al., Science 332:478-484, 2011; Zhao et al., Ann Rheum Dis 74:2244-2253, 2015). We recently published a visualized protocol to demonstrate a surgically-induced mouse model for examining the protective role of PGRN in degenerative osteoarthritis (Zhao et al., J Vis Exp:e50924, 2014). Herein we describe a modified collagen-induced arthritis (CIA) mouse model to investigate the anti-inflammatory activity of PGRN in inflammatory arthritis. CIA model is the most commonly used autoimmune model of inflammatory arthritis which shares both immunological and pathological features with human rheumatoid arthritis. Autoimmune inflammatory arthritis is induced by immunization with an emulsion of complete Freund's adjuvant and chicken type II collagen (CII) using a modified procedure in PGRN deficient mice and control littermates. Using the protocol described here, the investigator should be able to reproducibly induce a high incidence of CIA in PGRN deficient mice and also learn how to critically evaluate the severity and incidence of this disease model.
PMID: 29956284
ISSN: 1940-6029
CID: 3162622
Time-Resolved Cryo-electron Microscopy Using a Microfluidic Chip
Kaledhonkar, Sandip; Fu, Ziao; White, Howard; Frank, Joachim
With the advent of direct electron detectors, cryo-EM has become a popular choice for molecular structure determination. Among its advantages over X-ray crystallography are (1) no need for crystals, (2) much smaller sample volumes, and (3) the ability to determine multiple structures or conformations coexisting in one sample. In principle, kinetic experiments can be done using standard cryo-EM, but mixing and freezing grids require several seconds. However, many biological processes are much faster than that time scale, and the ensuing short-lived states of the molecules cannot be captured. Here, we lay out a detailed protocol for how to capture such intermediate states on the millisecond time scale with time-resolved cryo-EM.
PMID: 29605908
ISSN: 1940-6029
CID: 3045932
Clinicopathological features of epiretinal membranes in eyes filled with silicone oil
Tanaka, Yoshiaki; Toyoda, Fumihiko; Shimmura-Tomita, Machiko; Kinoshita, Nozomi; Takano, Hiroko; Dobashi, Yoh; Yamada, Shigeki; Obata, Hiroto; Kakehashi, Akihiro
Purpose/UNASSIGNED:The aim of this case series was to clarify the clinicopathological features of epiretinal membranes (ERMs) that developed in eyes after silicone oil (SO) tamponade to treat rhegmatog-enous retinal detachments (RRDs). Patients and methods/UNASSIGNED:In the Department of Ophthalmology, Saitama Medical Center, Jichi Medical University, patients with idiopathic ERMs (23 eyes) and ERMs in eyes filled with SO (SO ERMs) after vitreous surgery to treat RRDs (nine eyes) were enrolled from July 2012 to March 2014. ERM tissues obtained intraoperatively were examined histopathologically. Besides the main outcome measure of the pathological findings of the ERM tissues, other outcome measures included the preoperative findings on optical coherence tomography (OCT) images and the surgical findings. Results/UNASSIGNED:<0.001) larger than those in eyes with idiopathic ERMs. The findings on OCT images were consistent with the pathological features of the SO ERMs. Surgical removal of the SO ERMs was difficult because the sponge-like layer was fragile, and the underlying retina was also fragile due to inflammation. Conclusion/UNASSIGNED:SO ERMs are bilayered membranes. Long-standing emulsified SO formed a sponge-like layer and SO (foreign body)-induced granulation and caused retinal inflammation in these eyes, making surgical removal difficult. A preoperative OCT examination is necessary to identify SO ERMs.
PMID: 30323552
ISSN: 1177-5467
CID: 3368212
Albinism in Africa : historical, geographic, medical, genetic, and psychosocial aspects
Kromberg, Jennifer; Manga, Prashiela
London, United Kingdom : Elsevier, Academic Press, [2018]
Extent: xviii, 342 p. ; 24 cm
ISBN: 9780128133170
CID: 4428382