Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Neuroscience Institute

Total Results:

13474


A potential neurophysiological correlate of electric-acoustic pitch matching in adult cochlear implant users: Pilot data

Tan, Chin-Tuan; Martin, Brett A; Svirsky, Mario A
The overall goal of this study was to identify an objective physiological correlate of electric-acoustic pitch matching in unilaterally implanted cochlear implant (CI) participants with residual hearing in the non-implanted ear. Electrical and acoustic stimuli were presented in a continuously alternating fashion across ears. The acoustic stimulus and the electrical stimulus were either matched or mismatched in pitch. Auditory evoked potentials were obtained from nine CI users. Results indicated that N1 latency was stimulus-dependent, decreasing when the acoustic frequency of the tone presented to the non-implanted ear was increased. More importantly, there was an additional decrease in N1 latency in the pitch-matched condition. These results indicate the potential utility of N1 latency as an index of pitch matching in CI users.
PMCID:6123823
PMID: 29508662
ISSN: 1754-7628
CID: 2992042

Robust, Transient Neural Dynamics during Conscious Perception

He, Biyu J
While neuroscientific research on perceptual awareness has traditionally focused on the spatial and temporal localizations of neural activity underlying conscious processing, recent development suggests that the dynamic characteristics of spatiotemporally distributed neural activity contain important clues about the neural computational mechanisms underlying conscious processing. Here, we summarize recent progress.
PMID: 29764721
ISSN: 1879-307x
CID: 3121392

A bidirectional relationship between sleep and oxidative stress in Drosophila

Hill, Vanessa M; O'Connor, Reed M; Sissoko, Gunter B; Irobunda, Ifeoma S; Leong, Stephen; Canman, Julie C; Stavropoulos, Nicholas; Shirasu-Hiza, Mimi
Although sleep appears to be broadly conserved in animals, the physiological functions of sleep remain unclear. In this study, we sought to identify a physiological defect common to a diverse group of short-sleeping Drosophila mutants, which might provide insight into the function and regulation of sleep. We found that these short-sleeping mutants share a common phenotype of sensitivity to acute oxidative stress, exhibiting shorter survival times than controls. We further showed that increasing sleep in wild-type flies using genetic or pharmacological approaches increases survival after oxidative challenge. Moreover, reducing oxidative stress in the neurons of wild-type flies by overexpression of antioxidant genes reduces the amount of sleep. Together, these results support the hypothesis that a key function of sleep is to defend against oxidative stress and also point to a reciprocal role for reactive oxygen species (ROS) in neurons in the regulation of sleep.
PMCID:6042693
PMID: 30001323
ISSN: 1545-7885
CID: 3192292

Disaster Management

Grossman, Robert I
PMID: 29762099
ISSN: 1527-1315
CID: 3120762

Erratum to "Whole brain neuronal abnormalities in focal epilepsy quantified with proton MR spectroscopy" [Epilepsy Res. 139 (2018) 85-91] [Correction]

Kirov, Ivan I; Kuzniecky, Ruben; Hetherington, Hoby P; Soher, Brian J; Davitz, Matthew S; Babb, James S; Pardoe, Heath R; Pan, Jullie W; Gonen, Oded
PMID: 29656982
ISSN: 1872-6844
CID: 3042952

Letter to the Editor. Magnetic resonance-guided focused ultrasound and essential tremor [Letter]

Gallay, Marc; Jeanmonod, Daniel
PMID: 29961391
ISSN: 1092-0684
CID: 3199242

Publisher Correction: Viewpoints: how the hippocampus contributes to memory, navigation and cognition

Lisman, John; Buzsaki, Gyorgy; Eichenbaum, Howard; Nadel, Lynn; Ranganath, Charan; Redish, A David
In the version of this article initially published, author Charan Ranganath's last name was misspelled Rangananth in the author list. Also, A. David Redish (redish@umn.edu) has been added as a corresponding author. The error has been corrected, and the corresponding author added, in the HTML and PDF versions of the article.
PMID: 29263406
ISSN: 1546-1726
CID: 3197762

RACER-GRASP: Respiratory-weighted, aortic contrast enhancement-guided and coil-unstreaking golden-angle radial sparse MRI

Feng, Li; Huang, Chenchan; Shanbhogue, Krishna; Sodickson, Daniel K; Chandarana, Hersh; Otazo, Ricardo
PURPOSE: To develop and evaluate a novel dynamic contrast-enhanced imaging technique called RACER-GRASP (Respiratory-weighted, Aortic Contrast Enhancement-guided and coil-unstReaking Golden-angle RAdial Sparse Parallel) MRI that extends GRASP to include automatic contrast bolus timing, respiratory motion compensation, and coil-weighted unstreaking for improved imaging performance in liver MRI. METHODS: In RACER-GRASP, aortic contrast enhancement (ACE) guided k-space sorting and respiratory-weighted sparse reconstruction are performed using aortic contrast enhancement and respiratory motion signals extracted directly from the acquired data. Coil unstreaking aims to weight multicoil k-space according to streaking artifact level calculated for each individual coil during image reconstruction, so that coil elements containing a high level of streaking artifacts contribute less to the final results. Self-calibrating GRAPPA operator gridding was applied as a pre-reconstruction step to reduce computational burden in the subsequent iterative reconstruction. The RACER-GRASP technique was compared with standard GRASP reconstruction in a group of healthy volunteers and patients referred for clinical liver MR examination. RESULTS: Compared with standard GRASP, RACER-GRASP significantly improved overall image quality (average score: 3.25 versus 3.85) and hepatic vessel sharpness/clarity (average score: 3.58 versus 4.0), and reduced residual streaking artifact level (average score: 3.23 versus 3.94) in different contrast phases. RACER-GRASP also enabled automatic timing of the arterial phases. CONCLUSIONS: The aortic contrast enhancement-guided sorting, respiratory motion suppression and coil unstreaking introduced by RACER-GRASP improve upon the imaging performance of standard GRASP for free-breathing dynamic contrast-enhanced MRI of the liver. Magn Reson Med, 2017. (c) 2017 International Society for Magnetic Resonance in Medicine.
PMCID:5876099
PMID: 29193260
ISSN: 1522-2594
CID: 2797952

Stable Sequential Activity Underlying the Maintenance of a Precisely Executed Skilled Behavior

Katlowitz, Kalman A; Picardo, Michel A; Long, Michael A
A vast array of motor skills can be maintained throughout life. Do these behaviors require stability of individual neuron tuning or can the output of a given circuit remain constant despite fluctuations in single cells? This question is difficult to address due to the variability inherent in most motor actions studied in the laboratory. A notable exception, however, is the courtship song of the adult zebra finch, which is a learned, highly precise motor act mediated by orderly dynamics within premotor neurons of the forebrain. By longitudinally tracking the activity of excitatory projection neurons during singing using two-photon calcium imaging, we find that both the number and the precise timing of song-related spiking events remain nearly identical over the span of several weeks to months. These findings demonstrate that learned, complex behaviors can be stabilized by maintaining precise and invariant tuning at the level of single neurons.
PMCID:6094941
PMID: 29861283
ISSN: 1097-4199
CID: 3144292

Transformation of a Spatial Map across the Hippocampal-Lateral Septal Circuit

Tingley, David; Buzsaki, Gyorgy
The hippocampus constructs a map of the environment. How this "cognitive map" is utilized by other brain regions to guide behavior remains unexplored. To examine how neuronal firing patterns in the hippocampus are transmitted and transformed, we recorded neurons in its principal subcortical target, the lateral septum (LS). We observed that LS neurons carry reliable spatial information in the phase of action potentials, relative to hippocampal theta oscillations, while the firing rates of LS neurons remained uninformative. Furthermore, this spatial phase code had an anatomical microstructure within the LS and was bound to the hippocampal spatial code by synchronous gamma frequency cell assemblies. Using a data-driven model, we show that rate-independent spatial tuning arises through the dynamic weighting of CA1 and CA3 cell assemblies. Our findings demonstrate that transformation of the hippocampal spatial map depends on higher-order theta-dependent neuronal sequences. VIDEO ABSTRACT.
PMID: 29779942
ISSN: 1097-4199
CID: 3187772