Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Neuroscience Institute

Total Results:

13401


Assessment of the combination of temperature and relative humidity on kidney stone presentations

Ross, Michelle E; Vicedo-Cabrera, Ana M; Kopp, Robert E; Song, Lihai; Goldfarb, David S; Pulido, Jose; Warner, Steven; Furth, Susan L; Tasian, Gregory E
Temperature and relative humidity have opposing effects on evaporative water loss, the likely mediator of the temperature-dependence of nephrolithiasis. However, prior studies considered only dry-bulb temperatures when estimating the temperature-dependence of nephrolithiasis. We used distributed lag non-linear models and repeated 10-fold cross-validation to determine the daily temperature metric and corresponding adjustment for relative humidity that most accurately predicted kidney stone presentations during hot and cold periods in South Carolina from 1997 to 2015. We examined three metrics for wet-bulb temperatures and heat index, both of which measure the combination of temperature and humidity, and for dry-bulb temperatures: (1) daytime mean temperature; (2) 24-h mean temperature; and (3) most extreme 24-h temperature. For models using dry-bulb temperatures, we considered four treatments of relative humidity. Among 188,531 patients who presented with kidney stones, 24-h wet bulb temperature best predicted kidney stone presentation during summer. Mean cross-validated residuals were generally lower in summer for wet-bulb temperatures and heat index than the corresponding dry-bulb temperature metric, regardless of type of adjustment for relative humidity. Those dry-bulb models that additionally adjusted for relative humidity had higher mean residuals than other temperature metrics. The relative risk of kidney stone presentations at the 99th percentile of each temperature metric compared to the respective median temperature in summer months differed by temperature metric and relative humidity adjustment, and ranged from an excess risk of 8-14%. All metrics performed similarly in winter. The combination of temperature and relative humidity determine the risk of kidney stone presentations, particularly during periods of high heat and humidity. These results suggest that metrics that measure moist heat stress should be used to estimate the temperature-dependence of kidney stone presentations, but that the particular metric is relatively unimportant.
PMCID:5811384
PMID: 29289860
ISSN: 1096-0953
CID: 2899692

Phase-controlled, speckle-free holographic projection with applications in precision optogenetics

Aharoni, Tal; Shoham, Shy
Holographic speckle is a major impediment to computer-generated holographic (CGH) projections in applications ranging from display, optical tweezers, and machining to optogenetic neural control. We present an iterative phase retrieval algorithm that allows the projection of amplitude-controlled speckle-free one-dimensional patterns with a high degree of pattern uniformity. The algorithm, termed the weighted Gerchberg-Saxton with phase-control (GSW-PC), is shown to have the ability to simultaneously control both the phase and amplitude of projected patterns with high diffraction efficiencies. Furthermore, we show that the framework can address the challenge of projecting volumetric phase and amplitude-controlled patterns, by incorporating GSW-PC with the angular spectrum method. The algorithms' performance is numerically and experimentally tested, and further compared with conventional and modern CGH techniques.
PMCID:5852266
PMID: 29564366
ISSN: 2329-423x
CID: 3000982

A massive core for a cluster of galaxies at a redshift of 4.3

Miller, T B; Chapman, S C; Aravena, M; Ashby, M L N; Hayward, C C; Vieira, J D; Weiß, A; Babul, A; Béthermin, M; Bradford, C M; Brodwin, M; Carlstrom, J E; Chen, Chian-Chou; Cunningham, D J M; De Breuck, C; Gonzalez, A H; Greve, T R; Harnett, J; Hezaveh, Y; Lacaille, K; Litke, K C; Ma, J; Malkan, M; Marrone, D P; Morningstar, W; Murphy, E J; Narayanan, D; Pass, E; Perry, R; Phadke, K A; Rennehan, D; Rotermund, K M; Simpson, J; Spilker, J S; Sreevani, J; Stark, A A; Strandet, M L; Strom, A L
Massive galaxy clusters have been found that date to times as early as three billion years after the Big Bang, containing stars that formed at even earlier epochs1-3. The high-redshift progenitors of these galaxy clusters-termed 'protoclusters'-can be identified in cosmological simulations that have the highest overdensities (greater-than-average densities) of dark matter4-6. Protoclusters are expected to contain extremely massive galaxies that can be observed as luminous starbursts 7 . However, recent detections of possible protoclusters hosting such starbursts8-11 do not support the kind of rapid cluster-core formation expected from simulations 12 : the structures observed contain only a handful of starbursting galaxies spread throughout a broad region, with poor evidence for eventual collapse into a protocluster. Here we report observations of carbon monoxide and ionized carbon emission from the source SPT2349-56. We find that this source consists of at least 14 gas-rich galaxies, all lying at redshifts of 4.31. We demonstrate that each of these galaxies is forming stars between 50 and 1,000 times more quickly than our own Milky Way, and that all are located within a projected region that is only around 130 kiloparsecs in diameter. This galaxy surface density is more than ten times the average blank-field value (integrated over all redshifts), and more than 1,000 times the average field volume density. The velocity dispersion (approximately 410 kilometres per second) of these galaxies and the enormous gas and star-formation densities suggest that this system represents the core of a cluster of galaxies that was already at an advanced stage of formation when the Universe was only 1.4 billion years old. A comparison with other known protoclusters at high redshifts shows that SPT2349-56 could be building one of the most massive structures in the Universe today.
PMID: 29695849
ISSN: 1476-4687
CID: 3083692

CA1 pyramidal neuron gene expression mosaics in the Ts65Dn murine model of Down syndrome and Alzheimer's disease following maternal choline supplementation (MCS)

Alldred, Melissa J; Chao, Helen M; Lee, Sang Han; Beilin, Judah; Powers, Brian E; Petkova, Eva; Strupp, Barbara J; Ginsberg, Stephen D
Although there are changes in gene expression and alterations in neuronal density and afferent inputs in the forebrain of trisomic mouse models of Down syndrome (DS) and Alzheimer's disease (AD), there is a lack of systematic assessments of gene expression and encoded proteins within individual vulnerable cell populations, precluding translational investigations at the molecular and cellular level. Further, no effective treatment exists to combat intellectual disability and basal forebrain cholinergic neurodegeneration seen in DS. To further our understanding of gene expression changes before and following cholinergic degeneration in a well-established mouse model of DS/AD, the Ts65Dn mouse, we assessed RNA expression levels from CA1 pyramidal neurons at two adult ages (∼6 months of age and ∼11 months of age) in both Ts65Dn and their normal disomic (2N) littermates. We further examined a viable therapeutic, maternal choline supplementation (MCS), which has been previously shown to lessen dysfunction in spatial cognition and attention, and have protective effects on the survival of basal forebrain cholinergic neurons (BFCNs) in the Ts65Dn mouse model. Results indicate that MCS normalized expression of several genes in key gene ontology categories, including synaptic plasticity, calcium signaling, and AD-associated neurodegeneration related to amyloid-beta peptide (Aβ) clearance. Specifically, normalized expression levels were found for endothelin converting enzyme-2 (Ece2), insulin degrading enzyme (Ide), Dyrk1a, and calcium/calmodulin-dependent protein kinase II (Camk2a), among other relevant genes. Single population expression profiling of vulnerable CA1 pyramidal neurons indicates that MCS is a viable therapeutic for long-term reprogramming of key transcripts involved in neuronal signaling that are dysregulated in the trisomic mouse brain which have translational potential for DS and AD.
PMCID:5874173
PMID: 29394516
ISSN: 1098-1063
CID: 2933942

Future prospects and challenges for Alzheimer's disease drug development in the era of the NIA-AA Research Framework [Editorial]

Khachaturian, Ara S; Hayden, Kathleen M; Mielke, Michelle M; Tang, Yi; Lutz, Michael W; Gustafson, Deborah R; Kukull, Walter A; Mohs, Richard; Khachaturian, Zaven S
PMID: 29653605
ISSN: 1552-5279
CID: 3058942

High-Density Stretchable Electrode Grids for Chronic Neural Recording

Tybrandt, Klas; Khodagholy, Dion; Dielacher, Bernd; Stauffer, Flurin; Renz, Aline F; Buzsaki, Gyorgy; Voros, Janos
Electrical interfacing with neural tissue is key to advancing diagnosis and therapies for neurological disorders, as well as providing detailed information about neural signals. A challenge for creating long-term stable interfaces between electronics and neural tissue is the huge mechanical mismatch between the systems. So far, materials and fabrication processes have restricted the development of soft electrode grids able to combine high performance, long-term stability, and high electrode density, aspects all essential for neural interfacing. Here, this challenge is addressed by developing a soft, high-density, stretchable electrode grid based on an inert, high-performance composite material comprising gold-coated titanium dioxide nanowires embedded in a silicone matrix. The developed grid can resolve high spatiotemporal neural signals from the surface of the cortex in freely moving rats with stable neural recording quality and preserved electrode signal coherence during 3 months of implantation. Due to its flexible and stretchable nature, it is possible to minimize the size of the craniotomy required for placement, further reducing the level of invasiveness. The material and device technology presented herein have potential for a wide range of emerging biomedical applications.
PMCID:5948103
PMID: 29488263
ISSN: 1521-4095
CID: 3192982

Lateral cerebellum is preferentially sensitive to high sonic hedgehog signaling and medulloblastoma formation

Tan, I-Li; Wojcinski, Alexandre; Rallapalli, Harikrishna; Lao, Zhimin; Sanghrajka, Reeti M; Stephen, Daniel; Volkova, Eugenia; Korshunov, Andrey; Remke, Marc; Taylor, Michael D; Turnbull, Daniel H; Joyner, Alexandra L
The main cell of origin of the Sonic hedgehog (SHH) subgroup of medulloblastoma (MB) is granule cell precursors (GCPs), a SHH-dependent transient amplifying population in the developing cerebellum. SHH-MBs can be further subdivided based on molecular and clinical parameters, as well as location because SHH-MBs occur preferentially in the lateral cerebellum (hemispheres). Our analysis of adult patient data suggests that tumors with Smoothened (SMO) mutations form more specifically in the hemispheres than those with Patched 1 (PTCH1) mutations. Using sporadic mouse models of SHH-MB with the two mutations commonly seen in adult MB, constitutive activation ofSmo(SmoM2) or loss-of-Ptch1, we found that regardless of timing of induction or type of mutation, tumors developed primarily in the hemispheres, withSmoM2-mutants indeed showing a stronger specificity. We further uncovered that GCPs in the hemispheres are more susceptible to high-level SHH signaling compared with GCPs in the medial cerebellum (vermis), as moreSmoM2orPtch1-mutant hemisphere cells remain undifferentiated and show increased tumorigenicity when transplanted. Finally, we identified location-specific GCP gene-expression profiles, and found that deletion of the genes most highly expressed in the hemispheres (Nr2f2) or vermis (Engrailed1) showed opposing effects on GCP differentiation. Our studies thus provide insights into intrinsic differences within GCPs that impact on SHH-MB progression.
PMCID:5879676
PMID: 29531057
ISSN: 1091-6490
CID: 2992582

Cherub versus brat

Malin, Jennifer A; Desplan, Claude
A long non-coding RNA molecule called cherub is a driver of tumor development.
PMCID:5871327
PMID: 29580383
ISSN: 2050-084x
CID: 3011912

Developmental diversification of cortical inhibitory interneurons

Mayer, Christian; Hafemeister, Christoph; Bandler, Rachel C; Machold, Robert; Brito, Renata Batista; Jaglin, Xavier; Allaway, Kathryn; Butler, Andrew; Fishell, Gord; Satija, Rahul
Diverse subsets of cortical interneurons have vital roles in higher-order brain functions. To investigate how this diversity is generated, here we used single-cell RNA sequencing to profile the transcriptomes of mouse cells collected along a developmental time course. Heterogeneity within mitotic progenitors in the ganglionic eminences is driven by a highly conserved maturation trajectory, alongside eminence-specific transcription factor expression that seeds the emergence of later diversity. Upon becoming postmitotic, progenitors diverge and differentiate into transcriptionally distinct states, including an interneuron precursor state. By integrating datasets across developmental time points, we identified shared sources of transcriptomic heterogeneity between adult interneurons and their precursors, and uncovered the embryonic emergence of cardinal interneuron subtypes. Our analysis revealed that the transcription factor Mef2c, which is linked to various neuropsychiatric and neurodevelopmental disorders, delineates early precursors of parvalbumin-expressing neurons, and is essential for their development. These findings shed new light on the molecular diversification of early inhibitory precursors, and identify gene modules that may influence the specification of human interneuron subtypes.
PMCID:6052457
PMID: 29513653
ISSN: 1476-4687
CID: 2975202

Ben Barres (1954-2017)

Liddelow, Shane A; Eroglu, Cagla; Clandinin, Thomas R
PMID: 33245869
ISSN: 1097-4199
CID: 4762582