Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14036


Pulses of RhoA signaling stimulate actin polymerization and flow in protrusions to drive collective cell migration

Qian, Weiyi; Yamaguchi, Naoya; Lis, Patrycja; Cammer, Michael; Knaut, Holger
In animals, cells often move as collectives to shape organs, close wounds, or-in the case of disease-metastasize. To accomplish this, cells need to generate force to propel themselves forward. The motility of singly migrating cells is driven largely by an interplay between Rho GTPase signaling and the actin network. Whether cells migrating as collectives use the same machinery for motility is unclear. Using the zebrafish posterior lateral line primordium as a model for collective cell migration, we find that active RhoA and myosin II cluster on the basal sides of the primordium cells and are required for primordium motility. Positive and negative feedbacks cause RhoA and myosin II activities to pulse. These pulses of RhoA signaling stimulate actin polymerization at the tip of the protrusions and myosin-II-dependent actin flow and protrusion retraction at the base of the protrusions and deform the basement membrane underneath the migrating primordium. This suggests that RhoA-induced actin flow on the basal sides of the cells constitutes the motor that pulls the primordium forward, a scenario that likely underlies collective migration in other contexts.
PMID: 38096821
ISSN: 1879-0445
CID: 5588892

Integrator-mediated clustering of poised RNA polymerase II synchronizes histone transcription

Lu, Feiyue; Park, Brandon J; Fujiwara, Rina; Wilusz, Jeremy E; Gilmour, David S; Lehmann, Ruth; Lionnet, Timothée
UNLABELLED:nurse cells as a model, we find that Pol II forms long-lived, transcriptionally poised clusters distinct from liquid droplets, which contain unbound and paused Pol II. Depletion of the Integrator complex endonuclease module, but not its phosphatase module or Pol II pausing factors disperses these Pol II clusters. Consequently, histone transcription fails to reach peak levels during S-phase and aberrantly continues throughout the cell cycle. We propose that Pol II clustering is a regulatory step occurring near promoters that limits rapid gene activation to defined times. ONE SENTENCE SUMMARY/UNASSIGNED:histone locus as a model, we show that clustered RNA polymerase II is poised for synchronous activation.
PMCID:10592978
PMID: 37873455
ISSN: 2692-8205
CID: 5744062

RhoA GEF Mcf2lb regulates rosette integrity during collective cell migration

Olson, Hannah M; Maxfield, Amanda; Calistri, Nicholas L; Heiser, Laura M; Qian, Weiyi; Knaut, Holger; Nechiporuk, Alex V
Multicellular rosettes are transient epithelial structures that serve as important cellular intermediates in the formation of diverse organs. Using the zebrafish posterior lateral line primordium (pLLP) as a model system, we investigated the role of the RhoA GEF Mcf2lb in rosette morphogenesis. The pLLP is a group of ∼150 cells that migrates along the zebrafish trunk and is organized into epithelial rosettes; these are deposited along the trunk and will differentiate into sensory organs called neuromasts (NMs). Using single-cell RNA-sequencing and whole-mount in situ hybridization, we showed that mcf2lb is expressed in the pLLP during migration. Live imaging and subsequent 3D analysis of mcf2lb mutant pLLP cells showed disrupted apical constriction and subsequent rosette organization. This resulted in an excess number of deposited NMs along the trunk of the zebrafish. Cell polarity markers ZO-1 and Par-3 were apically localized, indicating that pLLP cells are properly polarized. In contrast, RhoA activity, as well as signaling components downstream of RhoA, Rock2a and non-muscle Myosin II, were diminished apically. Thus, Mcf2lb-dependent RhoA activation maintains the integrity of epithelial rosettes.
PMID: 38165177
ISSN: 1477-9129
CID: 5625932

Nav1.7 as a chondrocyte regulator and therapeutic target for osteoarthritis

Fu, Wenyu; Vasylyev, Dmytro; Bi, Yufei; Zhang, Mingshuang; Sun, Guodong; Khleborodova, Asya; Huang, Guiwu; Zhao, Libo; Zhou, Renpeng; Li, Yonggang; Liu, Shujun; Cai, Xianyi; He, Wenjun; Cui, Min; Zhao, Xiangli; Hettinghouse, Aubryanna; Good, Julia; Kim, Ellen; Strauss, Eric; Leucht, Philipp; Schwarzkopf, Ran; Guo, Edward X; Samuels, Jonathan; Hu, Wenhuo; Attur, Mukundan; Waxman, Stephen G; Liu, Chuan-Ju
Osteoarthritis (OA) is the most common joint disease. Currently there are no effective methods that simultaneously prevent joint degeneration and reduce pain1. Although limited evidence suggests the existence of voltage-gated sodium channels (VGSCs) in chondrocytes2, their expression and function in chondrocytes and in OA remain essentially unknown. Here we identify Nav1.7 as an OA-associated VGSC and demonstrate that human OA chondrocytes express functional Nav1.7 channels, with a density of 0.1 to 0.15 channels per µm2 and 350 to 525 channels per cell. Serial genetic ablation of Nav1.7 in multiple mouse models demonstrates that Nav1.7 expressed in dorsal root ganglia neurons is involved in pain, whereas Nav1.7 in chondrocytes regulates OA progression. Pharmacological blockade of Nav1.7 with selective or clinically used pan-Nav channel blockers significantly ameliorates the progression of structural joint damage, and reduces OA pain behaviour. Mechanistically, Nav1.7 blockers regulate intracellular Ca2+ signalling and the chondrocyte secretome, which in turn affects chondrocyte biology and OA progression. Identification of Nav1.7 as a novel chondrocyte-expressed, OA-associated channel uncovers a dual target for the development of disease-modifying and non-opioid pain relief treatment for OA.
PMCID:10794151
PMID: 38172636
ISSN: 1476-4687
CID: 5626502

Zebrafish smarcc1a mutants reveal requirements for BAF chromatin remodeling complexes in distinguishing the atrioventricular canal from the cardiac chambers

Auman, Heidi J; Fernandes, Ivy H; Berríos-Otero, César A; Colombo, Sophie; Yelon, Deborah
BACKGROUND:Essential patterning processes transform the heart tube into a compartmentalized organ with distinct chambers separated by an atrioventricular canal (AVC). This transition involves the refinement of expression of genes that are first found broadly throughout the heart tube and then become restricted to the AVC. Despite the importance of cardiac patterning, we do not fully understand the mechanisms that limit gene expression to the AVC. RESULTS:We show that the zebrafish gene smarcc1a, encoding a BAF chromatin remodeling complex subunit homologous to mammalian BAF155, is critical for cardiac patterning. In smarcc1a mutants, myocardial differentiation and heart tube assembly appear to proceed normally. Subsequently, the smarcc1a mutant heart fails to exhibit refinement of gene expression patterns to the AVC, and the persistence of broad gene expression is accompanied by failure of chamber expansion. In addition to their cardiac defects, smarcc1a mutants lack pectoral fins, indicating similarity to tbx5a mutants. However, comparison of smarcc1a and tbx5a mutants suggests that perturbation of tbx5a function is not sufficient to cause the smarcc1a mutant phenotype. CONCLUSIONS:Our data indicate an important role for Smarcc1a-containing chromatin remodeling complexes in regulating the changes in gene expression and morphology that distinguish the AVC from the cardiac chambers. This article is protected by copyright. All rights reserved.
PMID: 37083132
ISSN: 1097-0177
CID: 5466342

Telomere length: a marker for reproductive aging?

Pirtea, Paul; Keefe, David L; Ayoubi, Jean Marc; de Ziegler, Dominique
The improvements accomplished in assisted reproductive technology have emphasized more than ever the role played by chronological age, notably for predicting oocyte quality. Studies in cellular aging have directed research on telomere length measurements as possible markers of functional aging and, notably, female reproductive outcomes. Although further research is still needed, encouraging results are already available on the possibility that leucocyte telomere length may be a useful parameter for assessing reproductive potential in aging women.
PMID: 37914069
ISSN: 1556-5653
CID: 5620382

Telomere dynamics and reproduction

Robinson, LeRoy G; Kalmbach, Keri; Sumerfield, Olivia; Nomani, Wafa; Wang, Fang; Liu, Lin; Keefe, David L
The oocyte, a long-lived, postmitotic cell, is the locus of reproductive aging in women. Female germ cells replicate only during fetal life and age throughout reproductive life. Mechanisms of oocyte aging include the accumulation of oxidative damage, mitochondrial dysfunction, and disruption of proteins, including cohesion. Nobel Laureate Bob Edwards also discovered a "production line" during oogonial replication in the mouse, wherein the last oocytes to ovulate in the adult-derived from the last oogonia to exit mitotic replication in the fetus. On the basis of this, we proposed a two-hit "telomere theory of reproductive aging" to integrate the myriad features of oocyte aging. The first hit was that oocytes remaining in older women traversed more cell cycles during fetal oogenesis. The second hit was that oocytes accumulated more environmental and endogenous oxidative damage throughout the life of the woman. Telomeres (Ts) could mediate both of these aspects of oocyte aging. Telomeres provide a "mitotic clock," with T attrition an inevitable consequence of cell division because of the end replication problem. Telomere's guanine-rich sequence renders them especially sensitive to oxidative damage, even in postmitotic cells. Telomerase, the reverse transcriptase that restores Ts, is better at maintaining than elongating T. Moreover, telomerase remains inactive during much of oogenesis and early development. Oocytes are left with short Ts, on the brink of viability. In support of this theory, mice with induced T attrition and women with naturally occurring telomeropathy suffer diminished ovarian reserve, abnormal embryo development, and infertility. In contrast, sperm are produced throughout the life of the male by a telomerase-active progenitor, spermatogonia, resulting in the longest Ts in the body. In mice, cleavage-stage embryos elongate Ts via "alternative lengthening of telomeres," a recombination-based mechanism rarely encountered outside of telomerase-deficient cancers. Many questions about Ts and reproduction are raised by these findings: does the "normal" T attrition observed in human oocytes contribute to their extraordinarily high rate of meiotic nondisjunction? Does recombination-based T elongation render embryos susceptible to mitotic nondisjunction (and mosaicism)? Can some features of Ts serve as markers of oocyte quality?
PMID: 37993053
ISSN: 1556-5653
CID: 5608742

3D Enhancer-promoter networks provide predictive features for gene expression and coregulation in early embryonic lineages

Murphy, Dylan; Salataj, Eralda; Di Giammartino, Dafne Campigli; Rodriguez-Hernaez, Javier; Kloetgen, Andreas; Garg, Vidur; Char, Erin; Uyehara, Christopher M; Ee, Ly-Sha; Lee, UkJin; Stadtfeld, Matthias; Hadjantonakis, Anna-Katerina; Tsirigos, Aristotelis; Polyzos, Alexander; Apostolou, Effie
Mammalian embryogenesis commences with two pivotal and binary cell fate decisions that give rise to three essential lineages: the trophectoderm, the epiblast and the primitive endoderm. Although key signaling pathways and transcription factors that control these early embryonic decisions have been identified, the non-coding regulatory elements through which transcriptional regulators enact these fates remain understudied. Here, we characterize, at a genome-wide scale, enhancer activity and 3D connectivity in embryo-derived stem cell lines that represent each of the early developmental fates. We observe extensive enhancer remodeling and fine-scale 3D chromatin rewiring among the three lineages, which strongly associate with transcriptional changes, although distinct groups of genes are irresponsive to topological changes. In each lineage, a high degree of connectivity, or 'hubness', positively correlates with levels of gene expression and enriches for cell-type specific and essential genes. Genes within 3D hubs also show a significantly stronger probability of coregulation across lineages compared to genes in linear proximity or within the same contact domains. By incorporating 3D chromatin features, we build a predictive model for transcriptional regulation (3D-HiChAT) that outperforms models using only 1D promoter or proximal variables to predict levels and cell-type specificity of gene expression. Using 3D-HiChAT, we identify, in silico, candidate functional enhancers and hubs in each cell lineage, and with CRISPRi experiments, we validate several enhancers that control gene expression in their respective lineages. Our study identifies 3D regulatory hubs associated with the earliest mammalian lineages and describes their relationship to gene expression and cell identity, providing a framework to comprehensively understand lineage-specific transcriptional behaviors.
PMID: 38053013
ISSN: 1545-9985
CID: 5595532

Clonal Expansion in Cardiovascular Pathology

Lin, Alexander; Brittan, Mairi; Baker, Andrew H; Dimmeler, Stefanie; Fisher, Edward A; Sluimer, Judith C; Misra, Ashish
Clonal expansion refers to the proliferation and selection of advantageous "clones" that are better suited for survival in a Darwinian manner. In recent years, we have greatly enhanced our understanding of cell clonality in the cardiovascular context. However, our knowledge of the underlying mechanisms behind this clonal selection is still severely limited. There is a transpiring pattern of clonal expansion of smooth muscle cells and endothelial cells-and, in some cases, macrophages-in numerous cardiovascular diseases irrespective of their differing microenvironments. These findings indirectly suggest the possible existence of stem-like vascular cells which are primed to respond during disease. Subsequent clones may undergo further phenotypic changes to adopt either protective or detrimental roles. By investigating these clone-forming vascular cells, we may be able to harness this inherent clonal nature for future therapeutic intervention. This review comprehensively discusses what is currently known about clonal expansion across the cardiovascular field. Comparisons of the clonal nature of vascular cells in atherosclerosis (including clonal hematopoiesis of indeterminate potential), pulmonary hypertension, aneurysm, blood vessel injury, ischemia- and tumor-induced angiogenesis, and cerebral cavernous malformations are evaluated. Finally, we discuss the potential clinical implications of these findings and propose that proper understanding and specific targeting of these clonal cells may provide unique therapeutic options for the treatment of these cardiovascular conditions.
PMCID:10864919
PMID: 38362345
ISSN: 2452-302x
CID: 5635972

Surgical repair of large segmental bone loss with the induced membrane technique: patient reported outcomes are comparable to nonunions without bone loss

Konda, Sanjit R; Boadi, Blake I; Leucht, Philipp; Ganta, Abhishek; Egol, Kenneth A
OBJECTIVE:To compare the outcomes of patients with segmental bone loss who underwent repair with the induced membrane technique (IMT) with a matched cohort of nonunion fractures without bone loss. DESIGN/METHODS:Retrospective analysis on prospectively collected data. SETTING/METHODS:Academic medical center. PATIENTS/METHODS:Two cohorts of patients, those with upper and lower extremity diaphyseal large segmental bone loss and those with ununited fractures, were enrolled prospectively between 2013 and 2020. Sixteen patients who underwent repair of 17 extremities with segmental diaphyseal or meta-diaphyseal bone defects treated with the induced membrane technique were identified, and matched with 17 patients who were treated for 17 fracture nonunions treated without an induced membrane. Sixteen of the bone defects treated with the induced membrane technique were due to acute bone loss, and the other was a chronic aseptic nonunion. MAIN OUTCOME MEASUREMENTS/METHODS:Healing rate, time to union, functional outcome scores using the Short Musculoskeletal Functional Assessment (SMFA) and pain assessed by the Visual Analog Scale (VAS). RESULTS:The initial average defect size for patients treated with the induced membrane technique was 8.85 cm. Mean follow-up times were similar with 17.06 ± 10.13 months for patients treated with the IMT, and 20.35 ± 16.68. months for patients treated without the technique. Complete union was achieved in 15/17 (88.2%) of segmental bone loss cases treated with the IMT and 17/17 (100%) of cases repaired without the technique at the latest follow up visit. The average time to union for patients treated with the induced membrane technique was 13.0 ± 8.4 months and 9.64 ± 4.7 months for the matched cohort. There were no significant differences in reported outcomes measured by the SMFA or VAS. Patients treated with the induced membrane technique required more revision surgeries than those not treated with an induced membrane. CONCLUSION/CONCLUSIONS:Outcomes following treatment of acute bone loss from the diaphysis of long bones with the induced membrane technique produces clinical and radiographic outcomes similar to those of long bone fracture nonunions without bone loss that go on to heal. LEVEL OF EVIDENCE/METHODS:III.
PMID: 37439888
ISSN: 1432-1068
CID: 5537692