Searched for: school:SOM
Department/Unit:Neuroscience Institute
Community-based benchmarking improves spike rate inference from two-photon calcium imaging data
Berens, Philipp; Freeman, Jeremy; Deneux, Thomas; Chenkov, Nikolay; McColgan, Thomas; Speiser, Artur; Macke, Jakob H; Turaga, Srinivas C; Mineault, Patrick; Rupprecht, Peter; Gerhard, Stephan; Friedrich, Rainer W; Friedrich, Johannes; Paninski, Liam; Pachitariu, Marius; Harris, Kenneth D; Bolte, Ben; Machado, Timothy A; Ringach, Dario; Stone, Jasmine; Rogerson, Luke E; Sofroniew, Nicolas J; Reimer, Jacob; Froudarakis, Emmanouil; Euler, Thomas; Román Rosón, Miroslav; Theis, Lucas; Tolias, Andreas S; Bethge, Matthias
In recent years, two-photon calcium imaging has become a standard tool to probe the function of neural circuits and to study computations in neuronal populations. However, the acquired signal is only an indirect measurement of neural activity due to the comparatively slow dynamics of fluorescent calcium indicators. Different algorithms for estimating spike rates from noisy calcium measurements have been proposed in the past, but it is an open question how far performance can be improved. Here, we report the results of the spikefinder challenge, launched to catalyze the development of new spike rate inference algorithms through crowd-sourcing. We present ten of the submitted algorithms which show improved performance compared to previously evaluated methods. Interestingly, the top-performing algorithms are based on a wide range of principles from deep neural networks to generative models, yet provide highly correlated estimates of the neural activity. The competition shows that benchmark challenges can drive algorithmic developments in neuroscience.
PMCID:5997358
PMID: 29782491
ISSN: 1553-7358
CID: 3153382
Oxytocin Reduces Alcohol Cue-Reactivity in Alcohol Dependent Rats and Humans
Hansson, Anita C; Koopmann, Anne; Uhrig, Stefanie; Buhler, Sina; Domi, Esi; Kiessling, Eva; Ciccocioppo, Roberto; Froemke, Robert C; Grinevich, Valery; Kiefer, Falk; Sommer, Wolfgang H; Vollstadt-Klein, Sabine; Spanagel, Rainer
Approved pharmacological treatments for alcohol use disorder are limited in their effectiveness, and new drugs that can easily be translated into the clinic are warranted. One of those candidates is oxytocin because of its interaction with several alcohol-induced effects. Alcohol dependent rats as well as postmortem brains of human alcoholics and controls were analyzed for the expression of the oxytocin system by qRT-PCR, in situ hybridization, receptor autoradiography ([125I]-OVTA binding) and immunohistochemistry. Alcohol self-administration and cue-induced reinstatement behavior was measured after intracerebroventricular injection of 10 nM oxytocin in dependent rats. Here we show a pronounced up-regulation of oxytocin receptors in brain tissues of alcohol dependent rats and deceased alcoholics, primarily in frontal and striatal areas. This up-regulation stems most likely from reduced oxytocin expression in hypothalamic nuclei. Pharmacological validation showed that oxytocin reduced cue-induced reinstatement response in dependent rats-an effect that was not observed in non-dependent rats. Finally, a clinical pilot study (German clinical trial number DRKS00009253) using functional magnetic resonance imaging in heavy social male drinkers showed that intranasal oxytocin (24 IU) decreased neural cue-reactivity in brain networks similar to those detected in dependent rats and humans with increased oxytocin receptor expression. These studies suggest that oxytocin might be used as an anti-craving medication and thus may positively affect treatment outcomes in alcoholics.Neuropsychopharmacology accepted article preview online, 01 November 2017. doi:10.1038/npp.2017.257.
PMCID:5916348
PMID: 29090683
ISSN: 1740-634x
CID: 2765862
Regulation of KATPChannel Trafficking in Pancreatic β Cells by Protein Histidine Phosphorylation
Srivastava, Shekhar; Li, Zhai; Soomro, Irfana; Sun, Ying; Wang, Jianhui; Bao, Li; Coetzee, William A; Stanley, Charles A; Li, Chonghong; Skolnik, Edward Y
Protein histidine phosphatase 1 (PHPT-1) is an evolutionarily conserved 14 kDa protein that dephosphorylates phosphohistidine.PHPT-1
PMCID:5909995
PMID: 29440278
ISSN: 1939-327x
CID: 2958302
Comparison of cumulant expansion and q-space imaging estimates for diffusional kurtosis in brain
Mohanty, Vaibhav; McKinnon, Emilie T; Helpern, Joseph A; Jensen, Jens H
PURPOSE/OBJECTIVE:To compare estimates for the diffusional kurtosis in brain as obtained from a cumulant expansion (CE) of the diffusion MRI (dMRI) signal and from q-space (QS) imaging. THEORY AND METHODS/UNASSIGNED:were used to determine the diffusion displacement probability density function (dPDF) via Stejskal's formula. The kurtosis was then calculated directly from the second and fourth order moments of the dPDF. These two approximations were studied for in vivo human data obtained on a 3T MRI scanner using three orthogonal diffusion encoding directions. RESULTS:The whole brain mean values for the CE and QS kurtosis estimates differed by 16% or less in each of the considered diffusion encoding directions, and the Pearson correlation coefficients all exceeded 0.85. Nonetheless, there were large discrepancies in many voxels, particularly those with either very high or very low kurtoses relative to the mean values. CONCLUSION/CONCLUSIONS:Estimates of the diffusional kurtosis in brain obtained using CE and QS approximations are strongly correlated, suggesting that they encode similar information. However, for the choice of b-values employed here, there may be substantial differences, depending on the properties of the diffusion microenvironment in each voxel.
PMCID:5889972
PMID: 29306048
ISSN: 1873-5894
CID: 2987542
Connections that control defence strategy
Lin, Dayu
PMID: 29730673
ISSN: 1476-4687
CID: 3127862
Tau Antibody Structure Reveals a Molecular Switch Defining a Pathological Conformation of the Tau Protein
Chukwu, Jessica E; Pedersen, Jan T; Pedersen, Lars Ø; Volbracht, Christiane; Sigurdsson, Einar M; Kong, Xiang-Peng
Tau antibodies have shown therapeutic potential for Alzheimer's disease and several are in clinical trials. As a microtubule-associated protein, tau relies on dynamic phosphorylation for its normal functions. In tauopathies, it becomes hyperphosphorylated and aggregates into toxic assemblies, which collectively lead to neurodegeneration. Of the phospho-epitopes, the region around Ser396 has received particular attention because of its prominence and stability in tauopathies. Here we report the first structure of a monoclonal tau antibody in complex with the pathologically important phospho-Ser396 residue. Its binding region reveals tau residues Tyr394 to phospho-Ser396 stabilized in a β-strand conformation that is coordinated by a phospho-specific antigen binding site. These details highlight a molecular switch that defines this prominent conformation of tau and ways to target it. Overall, the structure of the antibody-antigen complex clarifies why certain phosphorylation sites in tau are more closely linked to neurodegeneration than others.
PMCID:5906480
PMID: 29670132
ISSN: 2045-2322
CID: 3042752
Thalamic Reticular Dysfunction as a Circuit Endophenotype in Neurodevelopmental Disorders
Krol, Alexandra; Wimmer, Ralf D; Halassa, Michael M; Feng, Guoping
Diagnoses of behavioral disorders such as autism spectrum disorder and schizophrenia are based on symptomatic descriptions that have been difficult to connect to mechanism. Although psychiatric genetics provide insight into the genetic underpinning of such disorders, with a majority of cases explained by polygenic factors, it remains difficult to design rational treatments. In this review, we highlight the value of understanding neural circuit function both as an intermediate level of explanatory description that links gene to behavior and as a pathway for developing rational diagnostics and therapeutics for behavioral disorders. As neural circuits perform hierarchically organized computational functions and give rise to network-level processes (e.g., macroscopic rhythms and goal-directed or homeostatic behaviors), correlated network-level deficits may indicate perturbation of a specific circuit. Therefore, identifying such correlated deficits or a circuit endophenotype would provide a mechanistic point of entry, enhancing both diagnosis and treatment of a given behavioral disorder. We focus on a circuit endophenotype of the thalamic reticular nucleus (TRN) and how its impairment in neurodevelopmental disorders gives rise to a correlated set of readouts across sleep and attention. Because TRN neurons express several disorder-relevant genes identified through genome-wide association studies, exploring the consequences of different TRN disruptions may be of broad translational significance.
PMID: 29673480
ISSN: 1097-4199
CID: 3057412
Fronto-thalamic Architectures for Cognitive Algorithms
Halassa, Michael M
In this issue of Neuron, Collins et al. (2018) delineate the functional circuit architecture connecting the prefrontal cortex with two major thalamic territories, the mediodorsal and ventromedial.
PMID: 29673474
ISSN: 1097-4199
CID: 3057402
The computational form of craving is a selective multiplication of economic value
Konova, Anna B; Louie, Kenway; Glimcher, Paul W
Craving is thought to be a specific desire state that biases choice toward the desired object, be it chocolate or drugs. A vast majority of people report having experienced craving of some kind. In its pathological form craving contributes to health outcomes in addiction and obesity. Yet despite its ubiquity and clinical relevance we still lack a basic neurocomputational understanding of craving. Here, using an instantaneous measure of subjective valuation and selective cue exposure, we identify a behavioral signature of a food craving-like state and advance a computational framework for understanding how this state might transform valuation to bias choice. We find desire induced by exposure to a specific high-calorie, high-fat/sugar snack good is expressed in subjects' momentary willingness to pay for this good. This effect is selective but not exclusive to the exposed good; rather, we find it generalizes to nonexposed goods in proportion to their subjective attribute similarity to the exposed ones. A second manipulation of reward size (number of snack units available for purchase) further suggested that a multiplicative gain mechanism supports the transformation of valuation during laboratory craving. These findings help explain how real-world food craving can result in behaviors inconsistent with preferences expressed in the absence of craving and open a path for the computational modeling of craving-like phenomena using a simple and repeatable experimental tool for assessing subjective states in economic terms.
PMCID:5910816
PMID: 29610355
ISSN: 1091-6490
CID: 3055482
TEMPORARY REMOVAL: Detecting stable individual differences in the functional organization of the human basal ganglia [Correction]
Garcia-Garcia, Manuel; Nikolaidis, Aki; Bellec, Pierre; Craddock, R Cameron; Cheung, Brian; Castellanos, Francisco X; Milham, Michael P
The publisher regrets that this article has been temporarily removed. A replacement will appear as soon as possible in which the reason for the removal of the article will be specified, or the article will be reinstated. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
PMID: 28739120
ISSN: 1095-9572
CID: 2654172