Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14091


Sonic Hedgehog Signaling Regulates Myofibroblast Function During Alveolar Septum Formation in Murine Postnatal Lung

Kugler, Matthias C; Loomis, Cynthia A; Zhao, Zhicheng; Cushman, Jennifer C; Liu, Li; Munger, John S
Sonic Hedgehog (Shh) signaling regulates mesenchymal proliferation and differentiation during embryonic lung development. In the adult lung, Shh signaling maintains mesenchymal quiescence and is dysregulated in diseases such as IPF and COPD. Our previous data implicated a role for Shh in postnatal lung development. Here we report a detailed analysis of Shh signaling during murine postnatal lung development. We show that Shh pathway expression and activity during alveolarization (P0-P14) are distinct from those during maturation (P14-P24). This biphasic pattern is paralleled by the transient presence of Gli1+;alpha-smooth muscle actin (aSMA)+ myofibroblasts in the growing alveolar septal tips. Carefully-timed inhibition of Hedgehog (Hh) signaling during alveolarization defined mechanisms by which Shh influences the mesenchymal compartment. First, interruption of Hh signaling at earlier time points results in increased lung compliance and wall structure defects of increasing severity, ranging from moderately enlarged alveolar airspaces to markedly enlarged airspaces and fewer secondary septa. Second, Shh signaling is required for myofibroblast differentiation: Hh inhibition during early alveolarization almost completely eliminates Gli1+;aSMA+ cells at the septal tips, and Gli1-lineage tracing revealed that Gli1+ cells do not undergo apoptosis after Hh inhibition, but remain in the alveolar septa and are unable to express aSMA. Third, Shh signaling is vital to mesenchymal proliferation during alveolarization, as Hh inhibition decreased proliferation of Gli1+ cells and their progeny. Our study establishes Shh as a new alveolarization promoting factor that might be affected in perinatal lung diseases that are associated with impaired alveolarization.
PMCID:5625221
PMID: 28379718
ISSN: 1535-4989
CID: 2521512

Loss of Apela Peptide in Mice Causes Low Penetrance Embryonic Lethality and Defects in Early Mesodermal Derivatives

Freyer, Laina; Hsu, Chih-Wei; Nowotschin, Sonja; Pauli, Andrea; Ishida, Junji; Kuba, Keiji; Fukamizu, Akiyoshi; Schier, Alexander F; Hoodless, Pamela A; Dickinson, Mary E; Hadjantonakis, Anna-Katerina
Apela (also known as Elabela, Ende, and Toddler) is a small signaling peptide that activates the G-protein-coupled receptor Aplnr to stimulate cell migration during zebrafish gastrulation. Here, using CRISPR/Cas9 to generate a null, reporter-expressing allele, we study the role of Apela in the developing mouse embryo. We found that loss of Apela results in low-penetrance cardiovascular defects that manifest after the onset of circulation. Three-dimensional micro-computed tomography revealed a higher penetrance of vascular remodeling defects, from which some mutants recover, and identified extraembryonic anomalies as the earliest morphological distinction in Apela mutant embryos. Transcriptomics at late gastrulation identified aberrant upregulation of erythroid and myeloid markers in mutant embryos prior to the appearance of physical malformations. Double-mutant analyses showed that loss of Apela signaling impacts early Aplnr-expressing mesodermal populations independently of the alternative ligand Apelin, leading to lethal cardiac defects in some Apela null embryos.
PMCID:5580402
PMID: 28854362
ISSN: 2211-1247
CID: 3070562

Enhanced exosome secretion in Down syndrome brain - a protective mechanism to alleviate neuronal endosomal abnormalities

Gauthier, Sebastien A; Perez-Gonzalez, Rocio; Sharma, Ajay; Huang, Fang-Ke; Alldred, Melissa J; Pawlik, Monika; Kaur, Gurjinder; Ginsberg, Stephen D; Neubert, Thomas A; Levy, Efrat
A dysfunctional endosomal pathway and abnormally enlarged early endosomes in neurons are an early characteristic of Down syndrome (DS) and Alzheimer's disease (AD). We have hypothesized that endosomal material can be released by endosomal multivesicular bodies (MVBs) into the extracellular space via exosomes to relieve neurons of accumulated endosomal contents when endosomal pathway function is compromised. Supporting this, we found that exosome secretion is enhanced in the brains of DS patients and a mouse model of the disease, and by DS fibroblasts. Furthermore, increased levels of the tetraspanin CD63, a regulator of exosome biogenesis, were observed in DS brains. Importantly, CD63 knockdown diminished exosome release and worsened endosomal pathology in DS fibroblasts. Taken together, these data suggest that increased CD63 expression enhances exosome release as an endogenous mechanism mitigating endosomal abnormalities in DS. Thus, the upregulation of exosome release represents a potential therapeutic goal for neurodegenerative disorders with endosomal pathology.
PMCID:5576289
PMID: 28851452
ISSN: 2051-5960
CID: 2679042

The molecular chaperones DNAJB6 and Hsp70 cooperate to suppress α-synuclein aggregation

Aprile, Francesco A; Källstig, Emma; Limorenko, Galina; Vendruscolo, Michele; Ron, David; Hansen, Christian
A major hallmark of Parkinson's disease (PD) is the presence of Lewy bodies (LBs) in certain neuronal tissues. LBs are protein-rich inclusions, in which α-synuclein (α-syn) is the most abundant protein. Since these inclusions are not present in healthy individuals, despite the high concentration of α-syn in neurons, it is important to investigate whether natural control mechanisms are present to efficiently suppress α-syn aggregation. Here, we demonstrate that a CRISPR/Cas9-mediated knockout (KO) of a DnaJ protein, DNAJB6, in HEK293T cells expressing α-syn, causes a massive increase in α-syn aggregation. Upon DNAJB6 re-introduction into these DNAJB6-KO HEK293T-α-syn cells, aggregation is reduced to the level of the parental cells. We then show that the suppression of α-syn aggregation is dependent on the J-domain of DNAJB6, as the catalytically inactive protein, which carries the H31Q mutation, does not suppress aggregation, when re-introduced into DNAJB6-KO cells. We further demonstrate, that the suppression of α-syn aggregation is dependent on the molecular chaperone Hsp70, which is consistent with the well-known function of J-domains of transferring unfolded and misfolded proteins to Hsp70. These data identify a natural control strategy to suppress α-syn aggregation and suggest potential therapeutic approaches to prevent or treat PD and related disorders.
PMCID:5567236
PMID: 28831037
ISSN: 2045-2322
CID: 3070082

A Personal Perspective: My Four Encounters with John Kendrew [Historical Article]

Wassarman, Paul M
By celebrating the 100th anniversary of John Kendrew's birth in 1917, the Journal of Molecular Biology recognizes his seminal contributions to science in general and structural biology in particular. John was first to use X-ray diffraction to solve the 3-dimensional structure of a protein, sperm-whale myoglobin, worthy of a Nobel Prize in Chemistry in 1962. John was the Founder and first Editor-in-Chief of the Journal of Molecular Biology, Deputy Chairman of the Laboratory of Molecular Biology and Head of its Division of Structural Studies, a Founder of the European Molecular Biology Organization, first Director-General of the European Molecular Biology Laboratory, and 33rd President of St. John's College, Oxford. In this personal perspective I relate how I came to know John as his postdoctoral fellow at the Laboratory of Molecular Biology in 1967 and as his biographer 45 years later.
PMID: 28433537
ISSN: 1089-8638
CID: 3176862

Nitrogen Cavitation and Differential Centrifugation Allows for Monitoring the Distribution of Peripheral Membrane Proteins in Cultured Cells

Zhou, Mo; Philips, Mark R
Cultured cells are useful for studying the subcellular distribution of proteins, including peripheral membrane proteins. Genetically encoded fluorescently tagged proteins have revolutionized the study of subcellular protein distribution. However, it is difficult to quantify the distribution with fluorescent microscopy, especially when proteins are partially cytosolic. Moreover, it is often important to study endogenous proteins. Biochemical assays such as immunoblots remain the gold standard for quantification of protein distribution after subcellular fractionation. Although there are commercial kits that aim to isolate cytosolic or certain membrane fractions, most of these kits are based on extraction with detergents, which may be unsuitable for studying peripheral membrane proteins that are easily extracted from membranes. Here we present a detergent-free protocol for cellular homogenization by nitrogen cavitation and subsequent separation of cytosolic and membrane-bound proteins by ultracentrifugation. We confirm the separation of subcellular organelles in soluble and pellet fractions across different cell types, and compare protein extraction among several common non-detergent-based mechanical homogenization methods. Among several advantages of nitrogen cavitation is the superior efficiency of cellular disruption with minimal physical and chemical damage to delicate organelles. Combined with ultracentrifugation, nitrogen cavitation is an excellent method to examine the shift of peripheral membrane proteins between cytosolic and membrane fractions.
PMID: 28872138
ISSN: 1940-087x
CID: 2687722

Generic membrane-spanning features endow IRE1α with responsiveness to membrane aberrancy

Kono, Nozomu; Amin-Wetzel, Niko; Ron, David
Altered cellular lipid composition activates the endoplasmic reticulum unfolded protein response (UPR), and UPR signaling effects important changes in lipid metabolism. Secondary effects on protein folding homeostasis likely contribute to UPR activation, but deletion of the unfolded protein stress-sensing luminal domain of the UPR transducers PERK and IRE1α does not abolish their responsiveness to lipid perturbation. This finding suggests that PERK and IRE1α also directly recognize the membrane aberrancy wrought by lipid perturbation. However, beyond the need for a transmembrane domain (TMD), little is known about the features involved. Regulation of the UPR transducers entails changes in their oligomeric state and is easily corrupted by overexpression. We used CRISPR/Cas9-mediated gene editing of the Ern1 locus to study the role of the TMD in the ability of the endogenous IRE1α protein to recognize membrane aberrancy in mammalian cells. Conducted in the background of a point mutation that isolated the response to membrane aberrancy induced by palmitate from unfolded protein stress, our analysis shows that generic membrane-spanning features of the TMD are sufficient for IRE1α's responsiveness to membrane aberrancy. Our data suggest that IRE1α's conserved TMD may have been selected for features imparting a relatively muted response to acyl-chain saturation.
PMCID:5555659
PMID: 28615323
ISSN: 1939-4586
CID: 3073362

Linking the environment, DAF-7/TGFbeta signaling and LAG-2/DSL ligand expression in the germline stem cell niche

Pekar, Olga; Ow, Maria C; Hui, Kailyn Y; Noyes, Marcus B; Hall, Sarah E; Hubbard, E Jane Albert
The developmental accumulation of proliferative germ cells in the C. elegans hermaphrodite is sensitive to the organismal environment. Previously, we found that the TGFbeta signaling pathway links the environment and proliferative germ cell accumulation. Neuronal DAF-7/TGFbeta causes a DAF-1/TGFbetaR signaling cascade in the gonadal distal tip cell (DTC), the germline stem cell niche, where it negatively regulates a DAF-3 SMAD and DAF-5 Sno-Ski. LAG-2, a founding DSL ligand family member, is produced in the DTC and activates the GLP-1/Notch receptor on adjacent germ cells to maintain germline stem cell fate. Here, we show that DAF-7/TGFbeta signaling promotes expression of lag-2 in the DTC in a daf-3-dependent manner. Using ChIP and one-hybrid assays, we find evidence for direct interaction between DAF-3 and the lag-2 promoter. We further identify a 25 bp DAF-3 binding element required for the DTC lag-2 reporter response to the environment and to DAF-7/TGFbeta signaling. Our results implicate DAF-3 repressor complex activity as a key molecular mechanism whereby the environment influences DSL ligand expression in the niche to modulate developmental expansion of the germline stem cell pool.
PMCID:5592813
PMID: 28811311
ISSN: 1477-9129
CID: 2669152

Uncoupling the Mitogenic and Metabolic Functions of FGF1 by Tuning FGF1-FGF Receptor Dimer Stability

Huang, Zhifeng; Tan, Yi; Gu, Junlian; Liu, Yang; Song, Lintao; Niu, Jianlou; Zhao, Longwei; Srinivasan, Lakshmi; Lin, Qian; Deng, Jingjing; Li, Yang; Conklin, Daniel J; Neubert, Thomas A; Cai, Lu; Li, Xiaokun; Mohammadi, Moosa
The recent discovery of metabolic roles for fibroblast growth factor 1 (FGF1) in glucose homeostasis has expanded the functions of this classically known mitogen. To dissect the molecular basis for this functional pleiotropy, we engineered an FGF1 partial agonist carrying triple mutations (FGF1DeltaHBS) that diminished its ability to induce heparan sulfate (HS)-assisted FGF receptor (FGFR) dimerization and activation. FGF1DeltaHBS exhibited a severely reduced proliferative potential, while preserving the full metabolic activity of wild-type FGF1 in vitro and in vivo. Hence, suboptimal FGFR activation by a weak FGF1-FGFR dimer is sufficient to evoke a metabolic response, whereas full FGFR activation by stable and sustained dimerization is required to elicit a mitogenic response. In addition to providing a physical basis for the diverse activities of FGF1, our findings will impact ongoing drug discoveries targeting FGF1 and related FGFs for the treatment of a variety of human diseases.
PMCID:5821125
PMID: 28813681
ISSN: 2211-1247
CID: 2669112

miR-7 Buffers Differentiation in the Developing Drosophila Visual System

Caygill, Elizabeth E; Brand, Andrea H
The 40,000 neurons of the medulla, the largest visual processing center of the Drosophila brain, derive from a sheet of neuroepithelial cells. During larval development, a wave of differentiation sweeps across the neuroepithelium, converting neuroepithelial cells into neuroblasts that sequentially express transcription factors specifying different neuronal cell fates. The switch from neuroepithelial cells to neuroblasts is controlled by a complex gene regulatory network and is marked by the expression of the proneural gene l'sc. We discovered that microRNA miR-7 is expressed at the transition between neuroepithelial cells and neuroblasts. We showed that miR-7 promotes neuroepithelial cell-to-neuroblast transition by targeting downstream Notch effectors to limit Notch signaling. miR-7 acts as a buffer to ensure that a precise and stereotypical pattern of transition is maintained, even under conditions of environmental stress, echoing the role that miR-7 plays in the eye imaginal disc. This common mechanism reflects the importance of robust visual system development.
PMCID:5561169
PMID: 28793250
ISSN: 2211-1247
CID: 5193352