Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14089


Genomic Characterization of Dysplastic Nevi Unveils Implications for Diagnosis of Melanoma

Melamed, Rachel D; Aydin, Iraz T; Rajan, Geena Susan; Phelps, Robert; Silvers, David N; Emmett, Kevin J; Brunner, Georg; Rabadan, Raul; Celebi, Julide Tok
A well-defined risk factor and precursor for cutaneous melanoma is the dysplastic nevus. These benign tumors represent clonal hyperproliferation of melanocytes that are in a senescent-like state, but with occasional malignant transformation events. To portray the mutational repertoire of dysplastic nevi in patients with the dysplastic nevus syndrome and to determine the discriminatory profiles of melanocytic nevi (including dysplastic nevi) from melanoma, we sequenced exomes of melanocytic nevi including dysplastic nevi (n = 19), followed by a targeted gene panel (785 genes) characterization of melanocytic nevi (n = 46) and primary melanomas (n = 42). Exome sequencing revealed that dysplastic nevi harbored a substantially lower mutational load than melanomas (21 protein-changing mutations versus >100). Known "driver" mutations in genes for melanoma, including CDKN2A, TP53, NF1, RAC1, and PTEN, were not found among any melanocytic nevi sequenced. Additionally, melanocytic nevi including dysplastic nevi showed a significantly lower frequency and a different UV-associated mutational signature. These results show that although melanocytic nevi and dysplastic nevi harbor stable genomes with relatively few alterations, progression into melanomas requires additional mutational processes affecting key tumor suppressors. This study identifies molecular parameters that could be useful for diagnostic platforms.
PMID: 27890785
ISSN: 1523-1747
CID: 5181242

The TDH-GCN5L1-Fbxo15-KBP axis limits mitochondrial biogenesis in mouse embryonic stem cells

Donato, Valerio; Bonora, Massimo; Simoneschi, Daniele; Sartini, Davide; Kudo, Yasusei; Saraf, Anita; Florens, Laurence; Washburn, Michael P; Stadtfeld, Matthias; Pinton, Paolo; Pagano, Michele
Self-renewing naive mouse embryonic stem cells (mESCs) contain few mitochondria, which increase in number and volume at the onset of differentiation. KBP (encoded by Kif1bp) is an interactor of the mitochondrial-associated kinesin Kif1Balpha. We found that TDH, responsible for mitochondrial production of acetyl-CoA in mESCs, and the acetyltransferase GCN5L1 cooperate to acetylate Lys501 in KBP, allowing its recognition by and degradation via Fbxo15, an F-box protein transcriptionally controlled by the pluripotency core factors and repressed following differentiation. Defects in KBP degradation in mESCs result in an unscheduled increase in mitochondrial biogenesis, enhanced respiration and ROS production, and inhibition of cell proliferation. Silencing of Kif1Balpha reverts the aberrant increase in mitochondria induced by KBP stabilization. Notably, following differentiation, Kif1bp-/- mESCs display impaired expansion of the mitochondrial mass and form smaller embryoid bodies. Thus, KBP proteolysis limits the accumulation of mitochondria in mESCs to preserve their optimal fitness, whereas KBP accumulation promotes mitochondrial biogenesis in differentiating cells.
PMCID:5376241
PMID: 28319092
ISSN: 1476-4679
CID: 2499342

The Basis for Acyl Specificity in the Tafazzin Reaction

Schlame, Michael; Xu, Yang; Ren, Mindong
Tafazzin is a mitochondrial enzyme that transfers fatty acids from phospholipids to lysophospholipids. Mutations in tafazzin cause abnormal molecular species of cardiolipin and the clinical phenotype of Barth syndrome. However, the mechanism by which tafazzin creates acyl specificity has been controversial. We have shown that the lipid phase state can produce acyl specificity in the tafazzin reaction but others have reported that tafazzin itself carries enzymatic specificity. To resolve this issue, we replicated and expanded the controversial experiments, i.e. the transfer of different acyl groups from phosphatidylcholine to monolyso-cardiolipin by yeast tafazzin. Our data show that this reaction requires the presence of detergent and does not take place in liposomes but in mixed micelles. In order to separate thermodynamic (lipid-dependent) from kinetic (enzyme-dependent) parameters, we followed the accumulation of cardiolipin during the reaction from the initial state to the equilibrium state. The transacylation rates of different acyl groups varied over 2 orders of magnitude and correlated tightly with the concentration of cardiolipin in the equilibrium state (lipid-dependent parameter). In contrast, the rates by which different transacylations approached the equilibrium state were very similar (enzyme-dependent parameter). Furthermore, we found that tafazzin catalyzes the remodeling of cardiolipin by combinations of forward and reverse transacylations, essentially creating an equilibrium distribution of acyl groups. These data strongly support the idea that the acyl specificity of the tafazzin reaction results from the physical properties of lipids.
PMCID:5392692
PMID: 28202545
ISSN: 1083-351x
CID: 2449242

Fossil and genomic evidence constrains the timing of bison arrival in North America

Froese, Duane; Stiller, Mathias; Heintzman, Peter D; Reyes, Alberto V; Zazula, Grant D; Soares, Andre E R; Meyer, Matthias; Hall, Elizabeth; Jensen, Britta J L; Arnold, Lee J; MacPhee, Ross D E; Shapiro, Beth
The arrival of bison in North America marks one of the most successful large-mammal dispersals from Asia within the last million years, yet the timing and nature of this event remain poorly determined. Here, we used a combined paleontological and paleogenomic approach to provide a robust timeline for the entry and subsequent evolution of bison within North America. We characterized two fossil-rich localities in Canada's Yukon and identified the oldest well-constrained bison fossil in North America, a 130,000-y-old steppe bison, Bison cf. priscus We extracted and sequenced mitochondrial genomes from both this bison and from the remains of a recently discovered, approximately 120,000-y-old giant long-horned bison, Bison latifrons, from Snowmass, Colorado. We analyzed these and 44 other bison mitogenomes with ages that span the Late Pleistocene, and identified two waves of bison dispersal into North America from Asia, the earliest of which occurred approximately 195-135 thousand y ago and preceded the morphological diversification of North American bison, and the second of which occurred during the Late Pleistocene, approximately 45-21 thousand y ago. This chronological arc establishes that bison first entered North America during the sea level lowstand accompanying marine isotope stage 6, rejecting earlier records of bison in North America. After their invasion, bison rapidly colonized North America during the last interglaciation, spreading from Alaska through continental North America; they have been continuously resident since then.
PMCID:5380047
PMID: 28289222
ISSN: 1091-6490
CID: 2489692

TriPer, an optical probe tuned to the endoplasmic reticulum tracks changes in luminal H2O2

Melo, Eduardo Pinho; Lopes, Carlos; Gollwitzer, Peter; Lortz, Stephan; Lenzen, Sigurd; Mehmeti, Ilir; Kaminski, Clemens F; Ron, David; Avezov, Edward
BACKGROUND:metabolism. RESULTS:signal and eroded β-cell viability. CONCLUSIONS:turnover.
PMCID:5368998
PMID: 28347335
ISSN: 1741-7007
CID: 3081272

A Novel Mechanism for the Grid-to-Place Cell Transformation Revealed by Transgenic Depolarization of Medial Entorhinal Cortex Layer II

Kanter, Benjamin R; Lykken, Christine M; Avesar, Daniel; Weible, Aldis; Dickinson, Jasmine; Dunn, Benjamin; Borgesius, Nils Z; Roudi, Yasser; Kentros, Clifford G
The spatial receptive fields of neurons in medial entorhinal cortex layer II (MECII) and in the hippocampus suggest general and environment-specific maps of space, respectively. However, the relationship between these receptive fields remains unclear. We reversibly manipulated the activity of MECII neurons via chemogenetic receptors and compared the changes in downstream hippocampal place cells to those of neurons in MEC. Depolarization of MECII impaired spatial memory and elicited drastic changes in CA1 place cells in a familiar environment, similar to those seen during remapping between distinct environments, while hyperpolarization did not. In contrast, both manipulations altered the firing rate of MEC neurons without changing their firing locations. Interestingly, only depolarization caused significant changes in the relative firing rates of individual grid fields, reconfiguring the spatial input from MEC. This suggests a novel mechanism of hippocampal remapping whereby rate changes in MEC neurons lead to locational changes of hippocampal place fields.
PMID: 28334610
ISSN: 1097-4199
CID: 3080962

mTORC1/2 inhibition preserves ovarian function and fertility during genotoxic chemotherapy

Goldman, Kara N; Chenette, Devon; Arju, Rezina; Duncan, Francesca E; Keefe, David L; Grifo, Jamie A; Schneider, Robert J
The ovary contains oocytes within immature (primordial) follicles that are fixed in number at birth. Activation of follicles within this fixed pool causes an irreversible decline in reproductive capacity, known as the ovarian reserve, until menopause. Premenopausal women undergoing commonly used genotoxic (DNA-damaging) chemotherapy experience an accelerated loss of the ovarian reserve, leading to subfertility and infertility. Therefore, there is considerable interest but little effective progress in preserving ovarian function during chemotherapy. Here we show that blocking the kinase mammalian/mechanistic target of rapamycin (mTOR) with clinically available small-molecule inhibitors preserves ovarian function and fertility during chemotherapy. Using a clinically relevant mouse model of chemotherapy-induced gonadotoxicity by cyclophosphamide, and inhibition of mTOR complex 1 (mTORC1) with the clinically approved drug everolimus (RAD001) or inhibition of mTORC1/2 with the experimental drug INK128, we show that mTOR inhibition preserves the ovarian reserve, primordial follicle counts, serum anti-Mullerian hormone levels (a rigorous measure of the ovarian reserve), and fertility. Chemotherapy-treated animals had significantly fewer offspring compared with all other treatment groups, whereas cotreatment with mTOR inhibitors preserved normal fertility. Inhibition of mTORC1 or mTORC1/2 within ovaries was achieved during chemotherapy cotreatment, concomitant with preservation of primordial follicle counts. Importantly, our findings indicate that as little as a two- to fourfold reduction in mTOR activity preserves ovarian function and normal birth numbers. As everolimus is approved for tamoxifen-resistant or relapsing estrogen receptor-positive breast cancer, these findings represent a potentially effective and readily accessible pharmacologic approach to fertility preservation during conventional chemotherapy.
PMCID:5373380
PMID: 28270607
ISSN: 1091-6490
CID: 2476872

The translation elongation cycle-capturing multiple states by cryo-electron microscopy

Frank, Joachim
During the work cycle of elongation, the ribosome, a molecular machine of vast complexity, exists in a large number of states distinguished by constellation of its subunits, its subunit domains and binding partners. Single-particle cryogenic electron microscopy (cryo-EM), developed over the past 40 years, is uniquely suited to determine the structure of molecular machines in their native states. With the emergence, 10 years ago, of unsupervised clustering techniques in the analysis of single-particle data, it has been possible to determine multiple structures from a sample containing ribosomes equilibrating in different thermally accessible states. In addition, recent advances in detector technology have made it possible to reach near-atomic resolution for some of these states. With these capabilities, single-particle cryo-EM has been at the forefront of exploring ribosome dynamics during its functional cycle, along with single-molecule fluorescence resonance energy transfer and molecular dynamics computations, offering insights into molecular architecture uniquely honed by evolution to capitalize on thermal energy in the ambient environment.This article is part of the themed issue 'Perspectives on the ribosome'.
PMCID:5311924
PMID: 28138066
ISSN: 1471-2970
CID: 4304762

Nectin-like 4 Complexes with Choline Transporter-like Protein-1 and Regulates Schwann Cell Choline Homeostasis and Lipid Biogenesis in Vitro

Heffernan, Corey; Jain, Mohit R; Liu, Tong; Kim, Hyosung; Barretto, Kevin; Li, Hong; Maurel, Patrice
Nectin-like 4 (NECL4, CADM4) is a Schwann cell-specific cell adhesion molecule that promotes axo-glial interactions. In vitro and in vivo studies have shown that NECL4 is necessary for proper peripheral nerve myelination. However, the molecular mechanisms that are regulated by NECL4 and affect peripheral myelination currently remain unclear. We used an in vitro approach to begin identifying some of the mechanisms that could explain NECL4 function. Using mass spectrometry and Western blotting techniques, we have identified choline transporter-like 1 (CTL1) as a putative complexing partner with NECL4. We show that intracellular choline levels are significantly elevated in NECL4-deficient Schwann cells. The analysis of extracellular d9-choline uptake revealed a deficit in the amount of d9-choline found inside NECL4-deficient Schwann cells, suggestive of either reduced transport capabilities or increased metabolization of transported choline. An extensive lipidomic screen of choline derivatives showed that total phosphatidylcholine and phosphatidylinositol (but not diacylglycerol or sphingomyelin) are significantly elevated in NECL4-deficient Schwann cells, particularly specific subspecies of phosphatidylcholine carrying very long polyunsaturated fatty acid chains. Finally, CTL1-deficient Schwann cells are significantly impaired in their ability to myelinate neurites in vitro To our knowledge, this is the first demonstration of a bona fide cell adhesion molecule, NECL4, regulating choline homeostasis and lipid biogenesis. Phosphatidylcholines are major myelin phospholipids, and several phosphorylated phosphatidylinositol species are known to regulate key aspects of peripheral myelination. Furthermore, the biophysical properties imparted to plasma membranes are regulated by fatty acid chain profiles. Therefore, it will be important to translate these in vitro observations to in vivo studies of NECL4 and CTL1-deficient mice.
PMCID:5377767
PMID: 28119456
ISSN: 1083-351x
CID: 3086322

One-Step Biallelic and Scarless Correction of a beta-Thalassemia Mutation in Patient-Specific iPSCs without Drug Selection

Liu, Yali; Yang, Yi; Kang, Xiangjin; Lin, Bin; Yu, Qian; Song, Bing; Gao, Ge; Chen, Yaoyong; Sun, Xiaofang; Li, Xiaoping; Bu, Lei; Fan, Yong
Monogenic disorders (MGDs), which are caused by single gene mutations, have a serious effect on human health. Among these, beta-thalassemia (beta-thal) represents one of the most common hereditary hematological diseases caused by mutations in the human hemoglobin beta (HBB) gene. The technologies of induced pluripotent stem cells (iPSCs) and genetic correction provide insights into the treatments for MGDs, including beta-thal. However, traditional approaches for correcting mutations have a low efficiency and leave a residual footprint, which leads to some safety concerns in clinical applications. As a proof of concept, we utilized single-strand oligodeoxynucleotides (ssODNs), high-fidelity CRISPR/Cas9 nuclease, and small molecules to achieve a seamless correction of the beta-41/42 (TCTT) deletion mutation in beta thalassemia patient-specific iPSCs with remarkable efficiency. Additionally, off-target analysis and whole-exome sequencing results revealed that corrected cells exhibited a minimal mutational load and no off-target mutagenesis. When differentiated into hematopoietic progenitor cells (HPCs) and then further to erythroblasts, the genetically corrected cells expressed normal beta-globin transcripts. Our studies provide the most efficient and safe approach for the genetic correction of the beta-41/42 (TCTT) deletion in iPSCs for further potential cell therapy of beta-thal, which represents a potential therapeutic avenue for the gene correction of MGD-associated mutants in patient-specific iPSCs.
PMCID:5363452
PMID: 28325300
ISSN: 2162-2531
CID: 2494512