Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Neurology

Total Results:

23146


Structural and Functional Imaging of the Retina in Central Retinal Artery Occlusion - Current Approaches and Future Directions

Mac Grory, Brian; Schrag, Matthew; Poli, Sven; Boisvert, Chantal J; Spitzer, Martin S; Schultheiss, Maximillian; Nedelmann, Max; Yaghi, Shadi; Guhwe, Mary; Moore, Elizabeth E; Hewitt, Hunter R; Barter, Kelsey M; Kim, Taewon; Chen, Maomao; Humayun, Lucas; Peng, Chang; Chhatbar, Pratik Y; Lavin, Patrick; Zhang, Xuxiang; Jiang, Xiaoning; Raz, Eytan; Saidha, Shiv; Yao, Junjie; Biousse, Valérie; Feng, Wuwei
Central retinal artery occlusion (CRAO) is a form of acute ischemic stroke which affects the retina. Intravenous thrombolysis is emerging as a compelling therapeutic approach. However, it is not known which patients may benefit from this therapy because there are no imaging modalities that adequately distinguish viable retina from irreversibly infarcted retina. The inner retina receives arterial supply from the central retinal artery and there is robust collateralization between this circulation and the outer retinal circulation, provided by the posterior ciliary circulation. Fundus photography can show canonical changes associated with CRAO including a cherry-red spot, arteriolar boxcarring and retinal pallor. Fluorescein angiography provides 2-dimensional imaging of the retinal circulation and can distinguish a complete from a partial CRAO as well as central versus peripheral retinal non-perfusion. Transorbital ultrasonography may assay flow through the central retinal artery and is useful in the exclusion of other orbital pathology that can mimic CRAO. Optical coherence tomography provides structural information on the different layers of the retina and exploratory work has described its utility in determining the time since onset of ischemia. Two experimental techniques are discussed. 1) Retinal functional imaging permits generation of capillary perfusion maps and can assay retinal oxygenation and blood flow velocity. 2) Photoacoustic imaging combines the principles of optical excitation and ultrasonic detection and - in animal studies - has been used to determine the retinal oxygen metabolic rate. Future techniques to determine retinal viability in clinical practice will require rapid, easily used, and reproducible methods that can be deployed in the emergency setting.
PMID: 34010777
ISSN: 1532-8511
CID: 4877322

Wheels Within Wheels: Theory and Practice of Epileptic Networks

Davis, Kathryn A; Jirsa, Viktor K; Schevon, Catherine A
PMID: 33988042
ISSN: 1535-7597
CID: 4867812

A prospective study of long-term outcomes among hospitalized COVID-19 patients with and without neurological complications

Frontera, Jennifer A; Yang, Dixon; Lewis, Ariane; Patel, Palak; Medicherla, Chaitanya; Arena, Vito; Fang, Taolin; Andino, Andres; Snyder, Thomas; Madhavan, Maya; Gratch, Daniel; Fuchs, Benjamin; Dessy, Alexa; Canizares, Melanie; Jauregui, Ruben; Thomas, Betsy; Bauman, Kristie; Olivera, Anlys; Bhagat, Dhristie; Sonson, Michael; Park, George; Stainman, Rebecca; Sunwoo, Brian; Talmasov, Daniel; Tamimi, Michael; Zhu, Yingrong; Rosenthal, Jonathan; Dygert, Levi; Ristic, Milan; Ishii, Haruki; Valdes, Eduard; Omari, Mirza; Gurin, Lindsey; Huang, Joshua; Czeisler, Barry M; Kahn, D Ethan; Zhou, Ting; Lin, Jessica; Lord, Aaron S; Melmed, Kara; Meropol, Sharon; Troxel, Andrea B; Petkova, Eva; Wisniewski, Thomas; Balcer, Laura; Morrison, Chris; Yaghi, Shadi; Galetta, Steven
BACKGROUND:Little is known regarding long-term outcomes of patients hospitalized with COVID-19. METHODS:We conducted a prospective study of 6-month outcomes of hospitalized COVID-19 patients. Patients with new neurological complications during hospitalization who survived were propensity score-matched to COVID-19 survivors without neurological complications hospitalized during the same period. The primary 6-month outcome was multivariable ordinal analysis of the modified Rankin Scale(mRS) comparing patients with or without neurological complications. Secondary outcomes included: activities of daily living (ADLs;Barthel Index), telephone Montreal Cognitive Assessment and Neuro-QoL batteries for anxiety, depression, fatigue and sleep. RESULTS:Of 606 COVID-19 patients with neurological complications, 395 survived hospitalization and were matched to 395 controls; N = 196 neurological patients and N = 186 controls completed follow-up. Overall, 346/382 (91%) patients had at least one abnormal outcome: 56% had limited ADLs, 50% impaired cognition, 47% could not return to work and 62% scored worse than average on ≥1 Neuro-QoL scale (worse anxiety 46%, sleep 38%, fatigue 36%, and depression 25%). In multivariable analysis, patients with neurological complications had worse 6-month mRS (median 4 vs. 3 among controls, adjusted OR 1.98, 95%CI 1.23-3.48, P = 0.02), worse ADLs (aOR 0.38, 95%CI 0.29-0.74, P = 0.01) and were less likely to return to work than controls (41% versus 64%, P = 0.04). Cognitive and Neuro-QOL metrics were similar between groups. CONCLUSIONS:Abnormalities in functional outcomes, ADLs, anxiety, depression and sleep occurred in over 90% of patients 6-months after hospitalization for COVID-19. In multivariable analysis, patients with neurological complications during index hospitalization had significantly worse 6-month functional outcomes than those without.
PMCID:8113108
PMID: 34000678
ISSN: 1878-5883
CID: 4876752

One-trial perceptual learning in the absence of conscious remembering and independent of the medial temporal lobe

Squire, Larry R; Frascino, Jennifer C; Rivera, Charlotte S; Heyworth, Nadine C; He, Biyu J
A degraded, black-and-white image of an object, which appears meaningless on first presentation, is easily identified after a single exposure to the original, intact image. This striking example of perceptual learning reflects a rapid (one-trial) change in performance, but the kind of learning that is involved is not known. We asked whether this learning depends on conscious (hippocampus-dependent) memory for the images that have been presented or on an unconscious (hippocampus-independent) change in the perception of images, independently of the ability to remember them. We tested five memory-impaired patients with hippocampal lesions or larger medial temporal lobe (MTL) lesions. In comparison to volunteers, the patients were fully intact at perceptual learning, and their improvement persisted without decrement from 1 d to more than 5 mo. Yet, the patients were impaired at remembering the test format and, even after 1 d, were impaired at remembering the images themselves. To compare perceptual learning and remembering directly, at 7 d after seeing degraded images and their solutions, patients and volunteers took either a naming test or a recognition memory test with these images. The patients improved as much as the volunteers at identifying the degraded images but were severely impaired at remembering them. Notably, the patient with the most severe memory impairment and the largest MTL lesions performed worse than the other patients on the memory tests but was the best at perceptual learning. The findings show that one-trial, long-lasting perceptual learning relies on hippocampus-independent (nondeclarative) memory, independent of any requirement to consciously remember.
PMID: 33952702
ISSN: 1091-6490
CID: 4868162

Neural integration underlying naturalistic prediction flexibly adapts to varying sensory input rate

Baumgarten, Thomas J; Maniscalco, Brian; Lee, Jennifer L; Flounders, Matthew W; Abry, Patrice; He, Biyu J
Prediction of future sensory input based on past sensory information is essential for organisms to effectively adapt their behavior in dynamic environments. Humans successfully predict future stimuli in various natural settings. Yet, it remains elusive how the brain achieves effective prediction despite enormous variations in sensory input rate, which directly affect how fast sensory information can accumulate. We presented participants with acoustic sequences capturing temporal statistical regularities prevalent in nature and investigated neural mechanisms underlying predictive computation using MEG. By parametrically manipulating sequence presentation speed, we tested two hypotheses: neural prediction relies on integrating past sensory information over fixed time periods or fixed amounts of information. We demonstrate that across halved and doubled presentation speeds, predictive information in neural activity stems from integration over fixed amounts of information. Our findings reveal the neural mechanisms enabling humans to robustly predict dynamic stimuli in natural environments despite large sensory input rate variations.
PMCID:8113607
PMID: 33976118
ISSN: 2041-1723
CID: 4868192

Early Experience with Comaneci, a Newly FDA-Approved Controllable Assist Device for Wide-Necked Intracranial Aneurysm Coiling

Taqi, M Asif; Raz, Eytan; Vechera, Anastasia; Shapiro, Maksim; Gupta, Rishi; Haynes, Joseph; Taussky, Philipp; Grandhi, Ramesh; Riina, Howard A; Nelson, Peter Kim; Nossek, Erez
BACKGROUND:Comaneci (Rapid Medical) is a compliant, adjustable mesh that provides temporary scaffolding during coiling of wide-necked intracranial aneurysms (WNAs) that preserves antegrade flow. We report our early multi-institutional experience with the Comaneci device in the USA. METHOD/METHODS:We reviewed all patients with WNAs that were treated using the Comaneci device for coil remodeling of ruptured and unruptured aneurysms at 4 institutions between July 2019 and May 2020. Clinical characteristics, angiographic variables, and endovascular results were assessed. RESULTS:A total of 26 patients were included (18 women). The mean age was 62.7 years (range 44-81). Fifteen patients presented with ruptured aneurysms and 11 with unruptured aneurysms. The mean aneurysm neck width was 3.91 mm (range 1.9-6.5) with a mean dome-to-neck ratio of 1.57 (range 0.59-3.39). The mean maximum width was 5.80 mm (range 3.0-9.9) and the mean maximum height was 5.61 mm (range 2.0-11.8). Successful aneurysm occlusion was achieved in 25 of 26 patients. Complete occlusion was achieved in 16 patients, near-complete occlusion was observed in 9 patients, and 1 patient demonstrated residual filling. The mean time of device exposure was 24 min (range 8-76). No vasospasm was observed at the device location. Clot formation on the device was noted in 2 separate cases, but there were no clinical sequelae. There was 1 intraprocedural complication in a case that involved the simultaneous use of 2 Comaneci devices. CONCLUSIONS:Our initial experience shows that the Comaneci device is a promising and reliable tool that can safely support coil remodeling of WNAs.
PMID: 33971661
ISSN: 1421-9786
CID: 4867202

Using Objective Structured Clinical Exams (OSCE) to Teach Neurology Residents to Disclose Prognosis after Hypoxic Ischemic Brain Injury

Carroll, Elizabeth; Nelson, Aaron; Kurzweil, Arielle; Zabar, Sondra; Lewis, Ariane
BACKGROUND:Neurologists need to be adept at disclosing prognosis and breaking bad news. Objective structured clinical examinations (OSCE) allow trainees to practice these skills. METHODS:In 2017, in conjunction with the NYU School of Medicine Simulation Center, neurology faculty designed an OSCE case in which a resident had to inform a standardized patient (SP) her father had severe global hypoxic ischemic injury. The residents were surveyed on the experience using a Likert scale from 1 (worst) to 5 (best). The SP completed a behavioral anchored checklist and marked items as "not done," "partly done," or "well done". RESULTS:57 third and fourth year neurology residents completed the case from 2018 to 2020, 54 (95%) of whom completed the post-OSCE survey. Residents reported feeling moderately prepared for the simulation (mean Likert score 3.7/5), and thought their performance was average (3.4/5). Overall, they found the case to be very helpful (4.6/5). The residents performed well in the realms of maintaining professionalism (64% rated "well done"), developing a relationship (62% rated "well done"), and information gathering (61% rated "well done"). There was room for improvement in the realms of providing education and presenting the bad news (39% and 37% rated "partly/not done," respectively). CONCLUSIONS:OSCE cases can be used to teach neurology trainees how to discuss prognosis and break bad news. Feedback about this simulation was positive, though its efficacy has yet to be evaluated and could be a future direction of study.
PMID: 33984743
ISSN: 1532-8511
CID: 4878462

High-frequency repetitive transcranial magnetic stimulation enhances layer II/III morphological dendritic plasticity in mouse primary motor cortex

Cambiaghi, Marco; Cherchi, Laura; Masin, Laura; Infortuna, Carmenrita; Briski, Nicholas; Caviasco, Christina; Hazaveh, Sara; Han, Zhiyong; Buffelli, Mario; Battaglia, Fortunato
High-frequency repeated transcranial magnetic stimulation (HF-rTMS) is a safe non-invasive neuromodulatory technique and there is a body of evidence shows that it can modulate plasticity in different brain areas. One of the most interesting application of HF-rTMS is the modulation of plasticity in primary motor cortex (M1) to promote recovery after brain injuries. However, the underlying mechanism by which HF-rTMS modulates motor cortex plasticity remain to be investigated. In this study, we investigated the effects of HF-rTMS treatment on morphological plasticity of pyramidal neurons in layer II/III (L2/3) of the primary motor cortex in mice. Our results show that the treatment did not increase anxiety in mice in the open field test and the elevated plus-maze test. Treated mice displayed increased total spine density in apical and basal dendrites, with a predominance of thin spines. The treatment also increased dendritic complexity, as assessed by Sholl analysis at both apical and basal dendrites. Collectively, the results show that HF-rTMS induced remarkable changes in dendritic complexity in primary motor cortex L2/3 connections which may strengthen corticocortical connections increasing integration of information across cortical areas. The data support the use of HF-rTMS as a circuit-targeting neuromodulation strategy.
PMID: 33979657
ISSN: 1872-7549
CID: 4867522

Validation of an EEG seizure detection paradigm optimized for clinical use in a chronically implanted subcutaneous device

Bacher, Dan; Amini, Andrew; Friedman, Daniel; Doyle, Werner; Pacia, Steven; Kuzniecky, Ruben
BACKGROUND:Many electroencephalography (EEG) based seizure detection paradigms have been developed and validated over the last two decades. The majority of clinical approaches use scalp or intracranial EEG electrodes. Scalp EEG is limited by patient discomfort and short duration of useful EEG signals. Intracranial EEG involves an invasive surgical procedure associated with significant risk making it unsuitable for widespread use as a practical clinical biometric. A less invasive EEG monitoring approach, that is between invasive intracranial procedures and noninvasive methods, would fill the need of a safe, accurate, chronic (ultra-long term) and objective seizure detection method. We present validation of a continuous EEG seizure detection paradigm using human single-channel EEG recordings from subcutaneously placed electrodes that could be used to fulfill this need. METHODS:Ten-minute long sleep, awake and ictal EEG epochs obtained from 21 human subjects with subscalp electrodes and validated against simultaneous iEEG recordings were analyzed by three experienced clinical neurophysiologists. The 201subscalp EEG time series epochs where classified as diagnostic for awake, asleep, or seizure by the clinicians who were blinded to all other information. Seventy of the epochs were classified in this way as representing seizure activity. A subject specific seizure detection algorithm was trained and then evaluated offline for each patient in the data set using the expert consensus classification as the gold standard. RESULTS:The average seizure detection performance of the algorithm across 21 subjects exceeded 90 % accuracy: 97 % sensitivity, 91 % specificity, and 93 % accuracy. For 19 of 21 patient datasets the algorithm achieved 100 % sensitivity. For 15 of 21 patients, the algorithm achieved 100 % specificity. For 13 of 21 patients the algorithm achieved 100 % accuracy. COMPARISON/UNASSIGNED:No comparable published methods are available for subgaleal EEG seizure detection. CONCLUSIONS:These findings suggest that a simple seizure detection algorithm using subcutaneous EEG signals could provide sufficient accuracy and clinical utility for use in a low power, long-term subcutaneous brain monitoring device. Such a device would fill a need for a large number of people with epilepsy who currently have no means for accurately quantifying their seizures thereby providing important information to healthcare providers not currently available.
PMID: 33971201
ISSN: 1872-678x
CID: 4878242

Remodeling of the Posterior Cerebral Artery P1-Segment after Pipeline Flow Diverter Treatment of Posterior Communicating Artery Aneurysms

Litao, Miguel S; Burkhardt, Jan-Karl; Tanweer, Omar; Raz, Eytan; Huang, Paul; Becske, Tibor; Shapiro, Maksim; Riina, Howard; Nelson, Peter K
INTRODUCTION/BACKGROUND:Flow diverters such as the pipeline embolization device (PED) cause hemodynamic changes of the treated vessel segment. In posterior communicating artery (PcomA), aneurysms' unique anatomic consideration have to be taken in account due to the connection between the anterior and posterior circulation. We hypothesize that in conjunction with PcomA remodeling, there will also be remodeling of the ipsilateral P1 segment of the posterior cerebral artery (PCA) after PED treatment for PcomA aneurysms. METHODS:We retrospectively collected radiological as well as clinical data of PcomA aneurysm patients treated with PED including PcomA and P1 vessel diameters before and after treatment as well as patient and aneurysm characteristics. RESULTS:= 0.042). There were no neurologic complications on LFU. CONCLUSION/CONCLUSIONS:In the treatment of PcomA aneurysms with PED, the P1 segment of the PCA increases in diameter while the PcomA diameter decreases. Our results suggest that this remodeling effect is associated with aneurysm occlusion and decrease of PcomA is hemodynamically compensated for by an increase in the ipsilateral P1 diameter.
PMCID:8162531
PMID: 34066972
ISSN: 2035-8385
CID: 4891352