Try a new search

Format these results:

Searched for:

person:nwb2

Total Results:

384


Transient receptor potential vanilloid (TRPV-1) promotes neurogenic inflammation in the pancreas via activation of the neurokinin-1 receptor (NK-1R)

Hutter, Matthew M; Wick, Elizabeth C; Day, Amy Lightner; Maa, John; Zerega, Elena C; Richmond, Alec C; Jordan, Thomas H; Grady, Eileen F; Mulvihill, Sean J; Bunnett, Nigel W; Kirkwood, Kimberly S
OBJECTIVES/OBJECTIVE:The transient receptor potential vanilloid 1 (TRPV-1) is an ion channel found on primary sensory afferent neurons. Activation of TRPV-1 leads to the release of the proinflammatory neuropeptide substance P (SP). SP then binds to the neurokinin-1 receptor (NK1-R) on endothelial cells and promotes extravasation of plasma and proteins into the interstitial tissue and neutrophil infiltration, a process called neurogenic inflammation. We tested 2 hypotheses: (1) activation of TRPV-1 in the pancreas leads to interstitial edema and neutrophil infiltration and (2) TRPV-1-induced plasma extravasation is mediated by the release of SP and activation of the NK1-R in the rat. METHODS:We measured extravasation of the intravascular tracer Evans blue as an index of plasma extravasation and quantified pancreas tissue myeloperoxidase activity (MPO) as a marker of neutrophil infiltration. The severity of inflammation following intravenous infusion of the secretagogue cerulein (10 microg/kg/h x 4 hours) was assessed using a histologic scoring system. RESULTS:Intravenous injection of the TRPV-1 agonist capsaicin induced a dose-dependent increase in Evans blue accumulation in the rat pancreas (P < 0.05 vs. vehicle control). This effect was blocked by pretreatment with the TRPV-1 antagonist capsazepine (1.8 mg/kg), or the NK1-R antagonist CP 96,345 (1 mg/kg). Capsazepine also reduced cerulein-induced Evans blue, MPO, and histologic severity of inflammation in the pancreas but had no effect on serum amylase. CONCLUSION/CONCLUSIONS:Activation of TRPV-1 induces SP-mediated plasma extravasation in the rat pancreas via activation of the NK1-R. TRPV-1 mediates neurogenic inflammation in cerulein-induced pancreatitis in the rat.
PMID: 15782105
ISSN: 1536-4828
CID: 4156972

Protease-activated receptors: regulation of neuronal function

Saito, Toshiyuki; Bunnett, Nigel W
Certain serine proteases from the circulation (e.g., coagulation factors), inflammatory cells (e.g., mast-cell tryptase, neutrophil proteinase 3), and from many other cell types (e.g., trypsins) can specifically signal to cells by cleaving protease-activated receptors (PARs), a family of four G protein-coupled receptors. Proteases cleave PARs at specific sites within the extracellular amino-terminus to expose amino-terminal tethered ligand domains that bind to and activate the cleaved receptors. The proteases that activate PARs are often generated and released during injury and inflammation, and activated PARs orchestrate tissue responses to injury, including hemostasis, inflammation, pain, and repair. This review concerns protease and PAR signaling in the nervous system. Neurons of the central and peripheral nervous systems express all four PARs. Proteases that may derive from the circulation, inflammatory cells, or neural tissues can cleave PARs on neurons and thereby activate diverse signaling pathways that control survival, morphology, release of neurotransmitters, and activity of ion channels. In this manner proteases and PARs regulate neurodegeneration, neurogenic inflammation, and pain transmission. Thus, PARs may participate in disease states and PAR antagonists or agonists may be useful therapies for certain disorders.
PMID: 16052040
ISSN: 1535-1084
CID: 4157012

Protease-activated receptors: protease signaling in the gastrointestinal tract

Amadesi, Silvia; Bunnett, Nigel
Serine proteases from the circulation, inflammatory cells, digestive glands and microorganisms can signal to cells by cleaving protease-activated receptors (PARs), a family of four G-protein-coupled receptors. Proteases cleave PARs at specific sites to expose tethered ligand domains that bind to and activate the cleaved receptors. Despite this irreversible mechanism of activation, PAR signaling is tightly regulated to prevent the uncontrolled stimulation of cells. Although PARs are found in all organ systems, protease signaling is of particular interest in the gastrointestinal tract, where proteases regulate neurotransmission, secretion, motility, epithelial permeability and intestinal inflammation, and can thus contribute to disease.
PMID: 15525542
ISSN: 1471-4892
CID: 4158872

A role for proteinase-activated receptor-1 in inflammatory bowel diseases [Correction]

Vergnolle, Nathalie; Cellars, Laurie; Mencarelli, Andrea; Rizzo, Giovanni; Swaminathan, Sunita; Beck, Paul; Steinhoff, Martin; Andrade-Gordon, Patricia; Bunnett, Nigel W; Hollenberg, Morley D; Wallace, John L; Cirino, Giuseppe; Fiorucci, Stefano
Proteinase-activated receptor-1 (PAR1), a G protein-coupled receptor activated by thrombin, is highly expressed in different cell types of the gastrointestinal tract. The activity of thrombin and of other proteinases is significantly increased in the colon of inflammatory bowel disease (IBD) patients. Since PAR1 activation in tissues other than the gut provoked inflammation, we hypothesized that PAR1 activation in the colon is involved in the pathogenesis of IBD. Here, we demonstrate that PAR1 is overexpressed in the colon of IBD patients. In mice, intracolonic administration of PAR1 agonists led to an inflammatory reaction characterized by edema and granulocyte infiltration. This PAR1 activation-induced inflammation was dependent on B and T lymphocytes. Moreover, PAR1 activation exacerbated and prolonged inflammation in a mouse model of IBD induced by the intracolonic administration of trinitrobenzene sulfonic acid (TNBS), while PAR1 antagonism significantly decreased the mortality and severity of colonic inflammation induced by TNBS and dextran sodium sulfate. In these 2 models, colitis development was strongly attenuated by PAR1 deficiency. Taken together, these results imply an important role for PAR1 in the pathogenesis of experimental colitis, supporting the notion that PAR1 inhibition may be beneficial in the context of IBD and possibly in other chronic intestinal inflammatory disorders.
PMID: 15545995
ISSN: 0021-9738
CID: 4156942

Recycling and resensitization of the neurokinin 1 receptor. Influence of agonist concentration and Rab GTPases

Roosterman, Dirk; Cottrell, Graeme S; Schmidlin, Fabien; Steinhoff, Martin; Bunnett, Nigel W
Substance P (SP) induces endocytosis and recycling of the neurokinin 1 receptor (NK1R) in endothelial cells and spinal neurons at sites of inflammation and pain, and it is thus important to understand the mechanism and function of receptor trafficking. We investigated how the SP concentration affects NK1R trafficking and determined the role of Rab GTPases in trafficking. NK1R trafficking was markedly influenced by the SP concentration. High SP (10 nM) induced translocation of the NK1R and beta-arrestin 1 to perinuclear sorting endosomes containing Rab5a, where NK1R remained for >60 min. Low SP (1 nM) induced translocation of the NK1R to early endosomes located immediately beneath the plasma membrane that also contained Rab5a and beta-arrestin 1, followed by rapid recycling of the NK1R. Overexpression of Rab5a promoted NK1R translocation to perinuclear sorting endosomes, whereas the GTP binding-deficient mutant Rab5aS34N caused retention of the NK1R in superficial early endosomes. NK1R translocated from superficial early endosomes to recycling endosomes containing Rab4a and Rab11a, and Rab11aS25N inhibited NK1R recycling. Rapid NK1R recycling coincided with resensitization of SP-induced Ca2+ mobilization and with the return of surface SP binding sites. Resensitization was minimally affected by inhibition of vacuolar H(+)-ATPase and phosphatases but was markedly suppressed by disruption of Rab4a and Rab11a. Thus, whereas beta-arrestins mediate NK1R endocytosis, Rab5a regulates translocation between early and sorting endosomes, and Rab4a and Rab11a regulate trafficking through recycling endosomes. We have thus identified a new function of Rab5a as a control protein for directing concentration-dependent trafficking of the NK1R into different intracellular compartments and obtained evidence that Rab4a and Rab11a contribute to G-protein-coupled receptor recycling from early endosomes.
PMID: 15128739
ISSN: 0021-9258
CID: 4156912

Cutaneous allergic contact dermatitis responses are diminished in mice deficient in neurokinin 1 receptors and augmented by neurokinin 2 receptor blockage

Scholzen, Thomas E; Steinhoff, Martin; Sindrilaru, Anca; Schwarz, Agatha; Bunnett, Nigel W; Luger, Thomas A; Armstrong, Cheryl A; Ansel, John C
Sensory neuropeptides such as neurokinin A (NKA) or particularly substance P (SP) by neurokinin receptor (NK-R) activation modulate skin and immune cells functions during neurogenic inflammation. In this study, we examined the relative importance of SP/NK-1Rs or NKA/NK-2Rs in a murine model for allergic contact dermatitis (ACD) and tested if the functional absence of NK-Rs will impair inflammatory response in vivo. Mice lacking NK-1Rs (C57BL/6J-NK-1R-/-) displayed a significantly reduced ACD inflammatory ear swelling response to dinitrofluorobenzene (DNFB) with histological less edema and 50% fewer infiltrating leukocytes compared with the ACD response in wild-type (+/+) animals. In NK-1R+/+ mice, transient NK-1R inhibition impaired ACD sensitization. In vitro haptenized bone marrow-derived dendritic cells from NK-1R+/+ mice matured in the presence of an NK-1R antagonist displayed a reduced capability to induce T cell proliferation in vitro and ACD after adoptive transfer into naïve wild-type mice in vivo. By contrast, NK-2R inhibition significantly enhanced the ACD response in NK-1R null or in wild-type mice, whereas epicutaneous application of NK-2R agonists diminished the ACD inflammation. In conclusion, NK-1R and SP are required for antigen sensitization and a full inflammatory response to cutaneous allergens and NKA and the NK-2R mediate a contrasting anti-inflammatory role in ACD. Thus, SP, NKA, NK-1R, and NK-2R have important but differential roles in the regulation of cutaneous inflammatory responses.
PMID: 15084523
ISSN: 1530-6860
CID: 4156902

Protease-activated receptor 2 sensitizes the capsaicin receptor transient receptor potential vanilloid receptor 1 to induce hyperalgesia

Amadesi, Silvia; Nie, Jingjiang; Vergnolle, Nathalie; Cottrell, Graeme S; Grady, Eileen F; Trevisani, Marcello; Manni, Chiara; Geppetti, Pierangelo; McRoberts, James A; Ennes, Helena; Davis, John B; Mayer, Emeran A; Bunnett, Nigel W
Inflammatory proteases (mast cell tryptase and trypsins) cleave protease-activated receptor 2 (PAR2) on spinal afferent neurons and cause persistent inflammation and hyperalgesia by unknown mechanisms. We determined whether transient receptor potential vanilloid receptor 1 (TRPV1), a cation channel activated by capsaicin, protons, and noxious heat, mediates PAR2-induced hyperalgesia. PAR2 was coexpressed with TRPV1 in small- to medium-diameter neurons of the dorsal root ganglia (DRG), as determined by immunofluorescence. PAR2 agonists increased intracellular [Ca2+] ([Ca2+]i) in these neurons in culture, and PAR2-responsive neurons also responded to the TRPV1 agonist capsaicin, confirming coexpression of PAR2 and TRPV1. PAR2 agonists potentiated capsaicin-induced increases in [Ca2+]i in TRPV1-transfected human embryonic kidney (HEK) cells and DRG neurons and potentiated capsaicin-induced currents in DRG neurons. Inhibitors of phospholipase C and protein kinase C (PKC) suppressed PAR2-induced sensitization of TRPV1-mediated changes in [Ca2+]i and TRPV1 currents. Activation of PAR2 or PKC induced phosphorylation of TRPV1 in HEK cells, suggesting a direct regulation of the channel. Intraplantar injection of a PAR2 agonist caused persistent thermal hyperalgesia that was prevented by antagonism or deletion of TRPV1. Coinjection of nonhyperalgesic doses of PAR2 agonist and capsaicin induced hyperalgesia that was inhibited by deletion of TRPV1 or antagonism of PKC. PAR2 activation also potentiated capsaicin-induced release of substance P and calcitonin gene-related peptide from superfused segments of the dorsal horn of the spinal cord, where they mediate hyperalgesia. We have identified a novel mechanism by which proteases that activate PAR2 sensitize TRPV1 through PKC. Antagonism of PAR2, TRPV1, or PKC may abrogate protease-induced thermal hyperalgesia.
PMCID:6729438
PMID: 15128844
ISSN: 1529-2401
CID: 4156922

Trypsin IV, a novel agonist of protease-activated receptors 2 and 4

Cottrell, Graeme S; Amadesi, Silvia; Grady, Eileen F; Bunnett, Nigel W
Certain serine proteases signal to cells by cleaving protease-activated receptors (PARs) and thereby regulate hemostasis, inflammation, pain and healing. However, in many tissues the proteases that activate PARs are unknown. Although pancreatic trypsin may be a physiological agonist of PAR(2) and PAR(4) in the small intestine and pancreas, these receptors are expressed by cells not normally exposed pancreatic trypsin. We investigated whether extrapancreatic forms of trypsin are PAR agonists. Epithelial cells lines from prostate, colon, and airway and human colonic mucosa expressed mRNA encoding PAR(2), trypsinogen IV, and enteropeptidase, which activates the zymogen. Immunoreactive trypsinogen IV was detected in vesicles in these cells. Trypsinogen IV was cloned from PC-3 cells and expressed in CHO cells, where it was also localized to cytoplasmic vesicles. We expressed trypsinogen IV with an N-terminal Igkappa signal peptide to direct constitutive secretion and allow enzymatic characterization. Treatment of conditioned medium with enteropeptidase reduced the apparent molecular mass of trypsinogen IV from 36 to 30 kDa and generated enzymatic activity, consistent with formation of trypsin IV. In contrast to pancreatic trypsin, trypsin IV was completely resistant to inhibition by polypeptide inhibitors. Exposure of cell lines expressing PAR(2) and PAR(4) to trypsin IV increased [Ca(2+)](i) and strongly desensitized cells to PAR agonists, whereas there were no responses in cells lacking these receptors. Thus, trypsin IV is a potential agonist of PAR(2) and PAR(4) in epithelial tissues where its resistance to endogenous trypsin inhibitors may permit prolonged signaling.
PMID: 14726524
ISSN: 0021-9258
CID: 4156872

Protease-activated receptors: contribution to physiology and disease

Ossovskaya, Valeria S; Bunnett, Nigel W
Proteases acting at the surface of cells generate and destroy receptor agonists and activate and inactivate receptors, thereby making a vitally important contribution to signal transduction. Certain serine proteases that derive from the circulation (e.g., coagulation factors), inflammatory cells (e.g., mast cell and neutrophil proteases), and from multiple other sources (e.g., epithelial cells, neurons, bacteria, fungi) can cleave protease-activated receptors (PARs), a family of four G protein-coupled receptors. Cleavage within the extracellular amino terminus exposes a tethered ligand domain, which binds to and activates the receptors to initiate multiple signaling cascades. Despite this irreversible mechanism of activation, signaling by PARs is efficiently terminated by receptor desensitization (receptor phosphorylation and uncoupling from G proteins) and downregulation (receptor degradation by cell-surface and lysosomal proteases). Protease signaling in tissues depends on the generation and release of proteases, availability of cofactors, presence of protease inhibitors, and activation and inactivation of PARs. Many proteases that activate PARs are produced during tissue damage, and PARs make important contributions to tissue responses to injury, including hemostasis, repair, cell survival, inflammation, and pain. Drugs that mimic or interfere with these processes are attractive therapies: selective agonists of PARs may facilitate healing, repair, and protection, whereas protease inhibitors and PAR antagonists can impede exacerbated inflammation and pain. Major future challenges will be to understand the role of proteases and PARs in physiological control mechanisms and human diseases and to develop selective agonists and antagonists that can be used to probe function and treat disease.
PMID: 15044683
ISSN: 0031-9333
CID: 4156892

Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome

Barbara, Giovanni; Stanghellini, Vincenzo; De Giorgio, Roberto; Cremon, Cesare; Cottrell, Graeme S; Santini, Donatella; Pasquinelli, Gianandrea; Morselli-Labate, Antonio M; Grady, Eileen F; Bunnett, Nigel W; Collins, Stephen M; Corinaldesi, Roberto
BACKGROUND & AIMS/OBJECTIVE:The mechanisms underlying abdominal pain perception in irritable bowel syndrome (IBS) are poorly understood. Intestinal mast cell infiltration may perturb nerve function leading to symptom perception. We assessed colonic mast cell infiltration, mediator release, and spatial interactions with mucosal innervation and their correlation with abdominal pain in IBS patients. METHODS:IBS patients were diagnosed according to Rome II criteria and abdominal pain quantified according to a validated questionnaire. Colonic mucosal mast cells were identified immunohistochemically and quantified with a computer-assisted counting method. Mast cell tryptase and histamine release were analyzed immunoenzymatically. Intestinal nerve to mast cell distance was assessed with electron microscopy. RESULTS:Thirty-four out of 44 IBS patients (77%) showed an increased area of mucosa occupied by mast cells as compared with controls (9.2% +/- 2.5% vs. 3.3 +/- 0.8%, respectively; P < 0.001). There was a 150% increase in the number of degranulating mast cells (4.76 +/- 3.18/field vs. 2.42 +/- 2.26/field, respectively; P = 0.026). Mucosal content of tryptase was increased in IBS and mast cells spontaneously released more tryptase (3.22 +/- 3.48 pmol/min/mg vs. 0.87 +/- 0.65 pmol/min/mg, respectively; P = 0.015) and histamine (339.7 +/- 59.0 ng/g vs. 169.3 +/- 130.6 ng/g, respectively; P = 0.015). Mast cells located within 5 microm of nerve fibers were 7.14 +/- 3.87/field vs. 2.27 +/- 1.63/field in IBS vs. controls (P < 0.001). Only mast cells in close proximity to nerves were significantly correlated with severity and frequency of abdominal pain/discomfort (P < 0.001 and P = 0.003, respectively). CONCLUSIONS:Colonic mast cell infiltration and mediator release in proximity to mucosal innervation may contribute to abdominal pain perception in IBS patients.
PMID: 14988823
ISSN: 0016-5085
CID: 4156882