Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14100


Proteomic profiling of interferon-responsive reactive astrocytes in rodent and human

Prakash, Priya; Erdjument-Bromage, Hediye; O'Dea, Michael R; Munson, Christy N; Labib, David; Fossati, Valentina; Neubert, Thomas A; Liddelow, Shane A
Astrocytes are a heterogeneous population of central nervous system glial cells that respond to pathological insults and injury by undergoing a transformation called "reactivity." Reactive astrocytes exhibit distinct and context-dependent cellular, molecular, and functional state changes that can either support or disturb tissue homeostasis. We recently identified a reactive astrocyte sub-state defined by interferon-responsive genes like Igtp, Ifit3, Mx1, and others, called interferon-responsive reactive astrocytes (IRRAs). To further this transcriptomic definition of IRRAs, we wanted to define the proteomic changes that occur in this reactive sub-state. We induced IRRAs in immunopanned rodent astrocytes and human iPSC-differentiated astrocytes using TNF, IL1α, C1Q, and IFNβ and characterized their proteomic profile (both cellular and secreted) using unbiased quantitative proteomics. We identified 2335 unique cellular proteins, including IFIT2/3, IFITM3, OASL1/2, MX1/2/3, and STAT1. We also report that rodent and human IRRAs secrete PAI1, a serine protease inhibitor which may influence reactive states and functions of nearby cells. Finally, we evaluated how IRRAs are distinct from neurotoxic reactive astrocytes (NRAs). While NRAs are described by expression of the complement protein C3, it was not upregulated in IRRAs. Instead, we found ~90 proteins unique to IRRAs not identified in NRAs, including OAS1A, IFIT3, and MX1. Interferon signaling in astrocytes is critical for the antiviral immune response and for regulating synaptic plasticity and glutamate transport mechanisms. How IRRAs contribute to these functions is unknown. This study provides the basis for future experiments to define the functional roles of IRRAs in the context of neurodegenerative disorders.
PMID: 38031883
ISSN: 1098-1136
CID: 5616902

Energetics of the microsporidian polar tube invasion machinery

Chang, Ray; Davydov, Ari; Jaroenlak, Pattana; Budaitis, Breane; Ekiert, Damian C; Bhabha, Gira; Prakash, Manu
Microsporidia are eukaryotic, obligate intracellular parasites that infect a wide range of hosts, leading to health and economic burdens worldwide. Microsporidia use an unusual invasion organelle called the polar tube (PT), which is ejected from a dormant spore at ultra-fast speeds, to infect host cells. The mechanics of PT ejection are impressive. Anncaliia algerae microsporidia spores (3-4 μm in size) shoot out a 100-nm-wide PT at a speed of 300 μm/s, creating a shear rate of 3000 s-1. The infectious cargo, which contains two nuclei, is shot through this narrow tube for a distance of ∼60-140 μm (Jaroenlak et al, 2020) and into the host cell. Considering the large hydraulic resistance in an extremely thin tube and the low-Reynolds-number nature of the process, it is not known how microsporidia can achieve this ultrafast event. In this study, we use Serial Block-Face Scanning Electron Microscopy to capture 3-dimensional snapshots of A. algerae spores in different states of the PT ejection process. Grounded in these data, we propose a theoretical framework starting with a systematic exploration of possible topological connectivity amongst organelles, and assess the energy requirements of the resulting models. We perform PT firing experiments in media of varying viscosity, and use the results to rank our proposed hypotheses based on their predicted energy requirement. We also present a possible mechanism for cargo translocation, and quantitatively compare our predictions to experimental observations. Our study provides a comprehensive biophysical analysis of the energy dissipation of microsporidian infection process and demonstrates the extreme limits of cellular hydraulics.
PMID: 38381133
ISSN: 2050-084x
CID: 5634292

Inhibiting influenza virus transmission using a broadly acting neuraminidase that targets host sialic acids in the upper respiratory tract

Ortigoza, Mila B; Mobini, Catherina L; Rocha, Hedy L; Bartlett, Stacey; Loomis, Cynthia A; Weiser, Jeffrey N
The ongoing transmission of influenza A viruses (IAV) for the past century continues to be a burden to humans. IAV binds terminal sialic acids (SA) of sugar molecules present within the upper respiratory tract (URT) in order to successfully infect hosts. The two most common SA structures that are important for IAV infection are those with α2,3- and α2,6-linkages. While mice were once considered to be an unsuitable system for studying IAV transmission due to their lack of α2,6-SA in the trachea, we have successfully demonstrated that IAV transmission in infant mice is remarkably efficient. This finding led us to re-evaluate the SA composition of the URT of mice using in situ immunofluorescence and examine its in vivo contribution to transmission for the first time. We demonstrate that mice express both α2,3- and α2,6-SA in the URT and that the difference in expression between infants and adults contributes to the variable transmission efficiencies observed. Furthermore, selectively blocking α2,3-SA or α2,6-SA within the URT of infant mice using lectins was necessary but insufficient at inhibiting transmission, and simultaneous blockade of both receptors was crucial in achieving the desired inhibitory effect. By employing a broadly acting neuraminidase to indiscriminately remove both SA moieties in vivo, we effectively suppressed viral shedding and halted the transmission of different strains of influenza viruses. These results emphasize the utility of the infant mouse model for studying IAV transmission and strongly indicate that broadly targeting host SA is an effective approach that inhibits IAV contagion.IMPORTANCEInfluenza virus transmission studies have historically focused on viral mutations that alter hemagglutinin binding to sialic acid (SA) receptors in vitro. However, SA binding preference does not fully account for the complexities of influenza A virus transmission in humans. Our previous findings reveal that viruses that are known to bind α2,6-SA in vitro have different transmission kinetics in vivo, suggesting that diverse SA interactions may occur during their life cycle. In this study, we examine the role of host SA on viral replication, shedding, and transmission in vivo. We highlight the critical role of SA presence during virus shedding, such that attachment to SA during virion egress is equally important as detachment from SA during virion release. These insights support the potential of broadly acting neuraminidases as therapeutic agents capable of restraining viral transmission in vivo. Our study unveils intricate virus-host interactions during shedding, highlighting the necessity to develop innovative strategies to effectively target transmission.
PMID: 38206008
ISSN: 2150-7511
CID: 5635222

β-Carotene accelerates the resolution of atherosclerosis in mice

Pinos, Ivan; Coronel, Johana; Albakri, Asma'a; Blanco, Amparo; McQueen, Patrick; Molina, Donald; Sim, JaeYoung; Fisher, Edward A; Amengual, Jaume
β-Carotene oxygenase 1 (BCO1) catalyzes the cleavage of β-carotene to form vitamin A. Besides its role in vision, vitamin A regulates the expression of genes involved in lipid metabolism and immune cell differentiation. BCO1 activity is associated with the reduction of plasma cholesterol in humans and mice, while dietary β-carotene reduces hepatic lipid secretion and delays atherosclerosis progression in various experimental models. Here we show that β-carotene also accelerates atherosclerosis resolution in two independent murine models, independently of changes in body weight gain or plasma lipid profile. Experiments in Bco1-/-
PMID: 38319073
ISSN: 2050-084x
CID: 5632492

Juvenile hormones direct primordial germ cell migration to the embryonic gonad

Barton, Lacy J; Sanny, Justina; Packard Dawson, Emily; Nouzova, Marcela; Noriega, Fernando Gabriel; Stadtfeld, Matthias; Lehmann, Ruth
Germ cells are essential to sexual reproduction. Across the animal kingdom, extracellular signaling isoprenoids, such as retinoic acids (RAs) in vertebrates and juvenile hormones (JHs) in invertebrates, facilitate multiple processes in reproduction. Here we investigated the role of these potent signaling molecules in embryonic germ cell development, using JHs in Drosophila melanogaster as a model system. In contrast to their established endocrine roles during larval and adult germline development, we found that JH signaling acts locally during embryonic development. Using an in vivo biosensor, we observed active JH signaling first within and near primordial germ cells (PGCs) as they migrate to the developing gonad. Through in vivo and in vitro assays, we determined that JHs are both necessary and sufficient for PGC migration. Analysis into the mechanisms of this newly uncovered paracrine JH function revealed that PGC migration was compromised when JHs were decreased or increased, suggesting that specific titers or spatiotemporal JH dynamics are required for robust PGC colonization of the gonad. Compromised PGC migration can impair fertility and cause germ cell tumors in many species, including humans. In mammals, retinoids have many roles in development and reproduction. We found that like JHs in Drosophila, RA was sufficient to impact mouse PGC migration in vitro. Together, our study reveals a previously unanticipated role of isoprenoids as local effectors of pre-gonadal PGC development and suggests a broadly shared mechanism in PGC migration.
PMID: 38215744
ISSN: 1879-0445
CID: 5633172

Cross-Disease Communication in Cardiovascular Disease and Cancer [Editorial]

Von Itter, Richard; Moore, Kathryn J
PMID: 38510295
ISSN: 2666-0873
CID: 5640632

Iliac Crest and Distal Radius Autografts Exhibit Distinct Cell-Intrinsic Functional Differences

Mehta, Devan D; Dankert, John F; Buchalter, Daniel B; Kirby, David J; Patel, Karan S; Rocks, Madeline; Hacquebord, Jacques H; Leucht, Philipp
PURPOSE/OBJECTIVE:Autologous bone grafts demonstrate osteoconductive, osteoinductive, and osteogenic properties. Hand surgeons commonly augment surgical fixation with autografts to promote fracture healing. This study compared the intrinsic stem cell-like properties of 2 commonly used autograft sources in hand surgery: the iliac crest and distal radius. METHODS:A total of 9 subjects who received an iliac crest bone graft and distal radius bone graft harvest as a part of the standard care of distal radius malunion or nonunion correction or scaphoid nonunion open reduction and internal fixation were enrolled in the study. Cells were isolated by serial collagenase digestion and subjected to fibroblast colony-forming units, osteogenesis, and adipogenesis assays. The expression levels of genes involved in osteogenesis and adipogenesis were confirmed using quantitative polymerase chain reaction. RESULTS:The cells isolated from the iliac crest bone graft compared with those isolated from the distal radius bone graft demonstrated significantly higher mean fibroblast colony-forming unit efficiency; increased osteogenesis, as measured using alizarin red quantification; increased adipogenesis, as measured using oil red O quantification; and higher expression levels of genes involved in osteogenesis and adipogenesis under the respective differentiation conditions. CONCLUSIONS:The cells isolated from the iliac crest bone graft demonstrated a higher fibroblast colony-forming unit capacity and an increased capability to undergo both osteogenesis and adipogenesis. CLINICAL RELEVANCE/CONCLUSIONS:Limited evidence exists comparing the intrinsic stem cell-like properties of the iliac crest and distal radius despite the widespread use of each source in hand and wrist surgery. The information from this investigation may assist hand and wrist surgeons with the selection of a source of autograft.
PMID: 35933254
ISSN: 1531-6564
CID: 5288512

Epithelial zonation along the mouse and human small intestine defines five discrete metabolic domains

Zwick, Rachel K; Kasparek, Petr; Palikuqi, Brisa; Viragova, Sara; Weichselbaum, Laura; McGinnis, Christopher S; McKinley, Kara L; Rathnayake, Asoka; Vaka, Dedeepya; Nguyen, Vinh; Trentesaux, Coralie; Reyes, Efren; Gupta, Alexander R; Gartner, Zev J; Locksley, Richard M; Gardner, James M; Itzkovitz, Shalev; Boffelli, Dario; Klein, Ophir D
A key aspect of nutrient absorption is the exquisite division of labour across the length of the small intestine, with individual nutrients taken up at different proximal:distal positions. For millennia, the small intestine was thought to comprise three segments with indefinite borders: the duodenum, jejunum and ileum. By examining the fine-scale longitudinal transcriptional patterns that span the mouse and human small intestine, we instead identified five domains of nutrient absorption that mount distinct responses to dietary changes, and three regional stem cell populations. Molecular domain identity can be detected with machine learning, which provides a systematic method to computationally identify intestinal domains in mice. We generated a predictive model of transcriptional control of domain identity and validated the roles of Ppar-δ and Cdx1 in patterning lipid metabolism-associated genes. These findings represent a foundational framework for the zonation of absorption across the mammalian small intestine.
PMID: 38321203
ISSN: 1476-4679
CID: 5873762

Evidence That Anemia Accelerates AS Progression Via Shear-Induced TGF-β1 Activation: Heyde's Syndrome Comes Full Circle

Subramani, Kumar; Bander, Jeffrey; Chen, Sixia; Suárez-Fariñas, Mayte; Venkatesan, Thamizhiniyan; Subrahmanian, Sandeep; Varshney, Rohan; Kini, Annapoorna; Sharma, Samin; Rifkin, Daniel B; Cho, Jaehyung; Coller, Barry S; Ahamed, Jasimuddin
The severity of aortic stenosis (AS) is associated with acquired von Willebrand syndrome (AVWS) and gastrointestinal bleeding, leading to anemia (Heyde's syndrome). We investigated how anemia is linked with AS and AVWS using the LA100 mouse model and patients with AS. Induction of anemia in LA100 mice increased transforming growth factor (TGF)-β1 activation, AVWS, and AS progression. Patients age >75 years with severe AS had higher plasma TGF-β1 levels and more severe anemia than AS patients age <75 years, and there was a correlation between TGF-β1 and anemia. These data are compatible with the hypothesis that the blood loss anemia of Heyde's syndrome contributes to AS progression via WSS-induced activation of platelet TGF-β1 and additional gastrointestinal bleeding via WSS-induced AVWS.
PMCID:10950403
PMID: 38510715
ISSN: 2452-302x
CID: 5789752

An update on private equity acquisitions in dermatology, 2013 to 2022

Agarwal, Aneesh; Orlow, Seth J
PMID: 37863202
ISSN: 1097-6787
CID: 5614262