Searched for: school:SOM
Department/Unit:Cell Biology
Impaired Epidermal to Dendritic T Cell Signaling Slows Wound Repair in Aged Skin
Keyes, Brice E; Liu, Siqi; Asare, Amma; Naik, Shruti; Levorse, John; Polak, Lisa; Lu, Catherine P; Nikolova, Maria; Pasolli, Hilda Amalia; Fuchs, Elaine
Aged skin heals wounds poorly, increasing susceptibility to infections. Restoring homeostasis after wounding requires the coordinated actions of epidermal and immune cells. Here we find that both intrinsic defects and communication with immune cells are impaired in aged keratinocytes, diminishing their efficiency in restoring the skin barrier after wounding. At the wound-edge, aged keratinocytes display reduced proliferation and migration. They also exhibit a dampened ability to transcriptionally activate epithelial-immune crosstalk regulators, including a failure to properly activate/maintain dendritic epithelial TÂ cells (DETCs), which promote re-epithelialization following injury. Probing mechanism, we find that aged keratinocytes near the wound edge don't efficiently upregulate Skints or activate STAT3. Notably, when epidermal Stat3, Skints, or DETCs are silenced in young skin, re-epithelialization following wounding is perturbed. These findings underscore epithelial-immune crosstalk perturbations in general, and Skints in particular, as critical mediators in the age-related decline in wound-repair.
PMCID:5364946
PMID: 27863246
ISSN: 1097-4172
CID: 2964052
Deletion of Neurotrophin Signaling through the Glucocorticoid Receptor Pathway Causes Tau Neuropathology
Arango-Lievano, Margarita; Peguet, Camille; Catteau, Matthias; Parmentier, Marie-Laure; Wu, Synphen; Chao, Moses V; Ginsberg, Stephen D; Jeanneteau, Freddy
Glucocorticoid resistance is a risk factor for Alzheimer's disease (AD). Molecular and cellular mechanisms of glucocorticoid resistance in the brain have remained unknown and are potential therapeutic targets. Phosphorylation of glucocorticoid receptors (GR) by brain-derived neurotrophic factor (BDNF) signaling integrates both pathways for remodeling synaptic structure and plasticity. The goal of this study is to test the role of the BDNF-dependent pathway on glucocorticoid signaling in a mouse model of glucocorticoid resistance. We report that deletion of GR phosphorylation at BDNF-responding sites and downstream signaling via the MAPK-phosphatase DUSP1 triggers tau phosphorylation and dendritic spine atrophy in mouse cortex. In human cortex, DUSP1 protein expression correlates with tau phosphorylation, synaptic defects and cognitive decline in subjects diagnosed with AD. These findings provide evidence for a causal role of BDNF-dependent GR signaling in tau neuropathology and indicate that DUSP1 is a potential target for therapeutic interventions.
PMCID:5110980
PMID: 27849045
ISSN: 2045-2322
CID: 2310582
A reporter model to visualize imprinting stability at the Dlk1 locus during mouse development and in pluripotent cells
Swanzey, Emily; Stadtfeld, Matthias
Genomic imprinting results in the monoallelic expression of genes that encode important regulators of growth and proliferation. Dysregulation of imprinted genes, such as those within the Dlk1-Dio3 locus, is associated with developmental syndromes and specific diseases. Our ability to interrogate causes of imprinting instability has been hindered by the absence of suitable model systems. Here, we describe a Dlk1 knockin reporter mouse that enables single-cell visualization of allele-specific expression and prospective isolation of cells, simultaneously. We show that this "imprinting reporter mouse" can be used to detect tissue-specific Dlk1 expression patterns in developing embryos. We also apply this system to pluripotent cell culture and demonstrate that it faithfully indicates DNA methylation changes induced upon cellular reprogramming. Finally, the reporter system reveals a role of elevated oxygen levels in eroding imprinted Dlk1 expression during prolonged culture and in vitro differentiation. The possibility to study allele-specific expression in different contexts makes our reporter system a useful tool to dissect the regulation of genomic imprinting in normal development and disease.
PMCID:5117214
PMID: 27729406
ISSN: 1477-9129
CID: 2278682
Liver microRNAs: potential mediators and biomarkers for metabolic and cardiovascular disease?
Willeit, Peter; Skroblin, Philipp; Kiechl, Stefan; Fernández-Hernando, Carlos; Mayr, Manuel
Recent discoveries have revealed that microRNAs (miRNAs) play a key role in the regulation of gene expression. In this review, we summarize the rapidly evolving knowledge about liver miRNAs (including miR-33, -33*, miR-223, -30c, -144, -148a, -24, -29, and -122) and their link to hepatic lipid metabolism, atherosclerosis and cardiovascular disease, non-alcoholic fatty liver disease, metabolic syndrome, and type-2 diabetes. With regards to its biomarker potential, the main focus is on miR-122 as the most abundant liver miRNA with exquisite tissue specificity. MiR-122 has been proposed to play a central role in the maintenance of lipid and glucose homeostasis and is consistently detectable in serum and plasma. This miRNA may therefore constitute a novel biomarker for cardiovascular and metabolic diseases.
PMCID:5146692
PMID: 27099265
ISSN: 1522-9645
CID: 4308302
Visualizing a Malware Distribution Network
Chapter by: Peryt, Sebastian; Andre Morales, Jose; Casey, William; Volkmann, Aaron; Mishra, Bud; Cai, Yang
in: 2016 IEEE Symposium on Visualization for Cyber Security, VizSec 2016 by
[S.l.] : Institute of Electrical and Electronics Engineers Inc., 2016
pp. ?-?
ISBN: 9781509016051
CID: 2852462
Hand2 inhibits kidney specification while promoting vein formation within the posterior mesoderm
Perens, Elliot A; Garavito-Aguilar, Zayra V; Guio-Vega, Gina P; Pena, Karen T; Schindler, Yocheved L; Yelon, Deborah
Proper organogenesis depends upon defining the precise dimensions of organ progenitor territories. Kidney progenitors originate within the intermediate mesoderm (IM), but the pathways that set the boundaries of the IM are poorly understood. Here, we show that the bHLH transcription factor Hand2 limits the size of the embryonic kidney by restricting IM dimensions. The IM is expanded in zebrafish hand2 mutants and is diminished when hand2 is overexpressed. Within the posterior mesoderm, hand2 is expressed laterally adjacent to the IM. Venous progenitors arise between these two territories, and hand2 promotes venous development while inhibiting IM formation at this interface. Furthermore, hand2 and the co-expressed zinc-finger transcription factor osr1 have functionally antagonistic influences on kidney development. Together, our data suggest that hand2 functions in opposition to osr1 to balance the formation of kidney and vein progenitors by regulating cell fate decisions at the lateral boundary of the IM.
PMCID:5132343
PMID: 27805568
ISSN: 2050-084X
CID: 2369322
PERSONALIZED SCREENING OF RADIOSENSITIZATION BY A TGF-beta SMALL MOLECULE INHIBITOR USING CULTURED EXPLANTS OF HIGH GRADE GLIOMA (HGG) PATIENT SPECIMENS [Meeting Abstract]
Ma, Lin; Bayin, Sumru; Placantonakis, Dimitris; Barcellos-Hoff, Mary Helen
ISI:000398604104033
ISSN: 1523-5866
CID: 2545162
GPR133 PROMOTES HYPOXIA-DRIVEN TUMOR PROGRESSION IN GLIOBLASTOMA [Meeting Abstract]
Frenster, Joshua; Bayin, NSumru; Kane, Josh Robert; Rubenstein, Jordan; Modrek, Aram; Baitamal, Rabaa; Dolgalev, Igor; Rudzenski, Katie; Snuderl, Matija; Golfinos, John; Doyle, Werner; Pacione, Donato; Chi, Andrew; Heguy, Adriana; Shohdy, Nadim; MacNeil, Douglas; Huang, Xinyan; Parker, Erik; Zagzag, David; Placantonakis, Dimitris
ISI:000398604104099
ISSN: 1523-5866
CID: 2545192
Immune cell screening of a nanoparticle library improves atherosclerosis therapy
Tang, Jun; Baxter, Samantha; Menon, Arjun; Alaarg, Amr; Sanchez-Gaytan, Brenda L; Fay, Francois; Zhao, Yiming; Ouimet, Mireille; Braza, Mounia S; Longo, Valerie A; Abdel-Atti, Dalya; Duivenvoorden, Raphael; Calcagno, Claudia; Storm, Gert; Tsimikas, Sotirios; Moore, Kathryn J; Swirski, Filip K; Nahrendorf, Matthias; Fisher, Edward A; Perez-Medina, Carlos; Fayad, Zahi A; Reiner, Thomas; Mulder, Willem J M
Immunological complexity in atherosclerosis warrants targeted treatment of specific inflammatory cells that aggravate the disease. With the initiation of large phase III trials investigating immunomodulatory drugs for atherosclerosis, cardiovascular disease treatment enters a new era. We here propose a radically different approach: implementing and evaluating in vivo a combinatorial library of nanoparticles with distinct physiochemical properties and differential immune cell specificities. The library's nanoparticles are based on endogenous high-density lipoprotein, which can preferentially deliver therapeutic compounds to pathological macrophages in atherosclerosis. Using the apolipoprotein E-deficient (Apoe-/-) mouse model of atherosclerosis, we quantitatively evaluated the library's immune cell specificity by combining immunological techniques and in vivo positron emission tomography imaging. Based on this screen, we formulated a liver X receptor agonist (GW3965) and abolished its liver toxicity while still preserving its therapeutic function. Screening the immune cell specificity of nanoparticles can be used to develop tailored therapies for atherosclerosis and other inflammatory diseases.
PMCID:5098679
PMID: 27791119
ISSN: 1091-6490
CID: 2288872
ASTROCYTOMA MUTATIONS IDH1, p53 AND ATRX COOPERATE TO BLOCK DIFFERENTIATION OF NEURAL STEM CELLS VIA Sox2 [Meeting Abstract]
Modrek, Aram; Golub, Danielle; Khan, Themasap; Zhang, Guoan; Kader, Michael; Bowman, Christopher; Prado, Jod; Bayin, NSumru; Frenster, Joshua; Lhakhang, Tenzin; Heguy, Adriana; Dankert, John; Tsirigos, Aristotelis; Snuderl, Matija; Neubert, Thomas; Placantonakis, Dimitris
ISI:000398604104095
ISSN: 1523-5866
CID: 2545182