Searched for: school:SOM
Department/Unit:Neurology
Stem Cell-Derived Dopamine Neurons: Will They Replace DBS as the Leading Neurosurgical Treatment for Parkinson's Disease?
Barker, Roger A; Björklund, Anders; Frucht, Steven J; Svendsen, Clive N
The use of stem cell-derived dopamine neurons or deep brain stimulation (DBS) represents two alternative approaches to treat Parkinson's Disease. DBS is a widely used FDA-approved treatment and stem cell-derived dopamine neuron replacement has now evolved to the first in-human clinical trials. In this debate, we discuss which of these approaches will evolve to be the treatment of choice for Parkinsonian patients in the future.
PMID: 34334425
ISSN: 1877-718x
CID: 5004142
The Relationship of Anxiety with Alzheimer's Disease: A Narrative Review
Patel, Palak; Masurkar, Arjun V
BACKGROUND:There is an increased effort to better understand neuropsychiatric symptoms of Alzheimer's disease (AD) as an important feature of symptomatic burden as well as potential modi- fiable factors of the disease process. Anxiety is one of the most common neuropsychiatric symptoms in Alzheimer's disease (AD). A growing body of work has emerged that addresses the epidemiology and biological correlations of anxiety in AD. OBJECTIVE AND METHODS/OBJECTIVE:Here, we review human studies in research and clinical cohorts that examined anxiety in AD. We focused on work related to prevalence across AD stages, correlation with established biomarkers, relationship with AD neuropathology and genetic risk factors, and impact on progression. RESULTS:Anxiety is prominent in the early stages and increases across the spectrum of functional stages. Biomarker relationships are strongest at the level of FDG-PET and amyloid measured via PET or cerebrospinal fluid analysis. Neuropathologically, anxiety emerges with early Braak stage tau pathology. The presence of the apolipoprotein E e4 allele is associated with increased anxiety at all stages, most notably at mild cognitive impairment. Anxiety portended a faster progression at all pre-dementia stages. CONCLUSION/CONCLUSIONS:This body of work suggests a close biological relationship between anxiety and AD that begins in early stages and influences functional decline. As such, we discuss future work that would improve our understanding of this relationship and test the validity of anxiolytic treatment as disease modifying therapy for AD.
PMID: 34429045
ISSN: 1875-5828
CID: 4980082
Looking "Cherry Red Spot Myoclonus" in the Eyes: Clinical Phenotype, Treatment Response, and Eye Movements in Sialidosis Type 1
Riboldi, Giulietta M; Martone, John; Rizzo, John-Ross; Hudson, Todd E; Rucker, Janet C; Frucht, Steven J
Sialidosis type 1 is a rare lysosomal storage disorder caused by mutations of the neuraminidase gene. Specific features suggesting this condition include myoclonus, ataxia and macular cherry-red spots. However, phenotypic variability exists. Here, we present detailed clinical and video description of three patients with this rare condition. We also provide an in-depth characterization of eye movement abnormalities, as an additional tool to investigate pathophysiological mechanisms and to facilitate diagnosis. In our patients, despite phenotypic differences, eye movement deficits largely localized to the cerebellum.
PMCID:8681143
PMID: 34992946
ISSN: 2160-8288
CID: 5107412
Observing patterns in MRI with QSM in Patients with SOD1 Genetic ALS [Meeting Abstract]
Warner, Robin
ISI:000729283605280
ISSN: 0028-3878
CID: 5504402
Too much to handle: Performance of dual-object primitives is limited in the nondominant and paretic upper extremity [Meeting Abstract]
Fokas, E; Parnandi, A; Venkatesan, A; Pandit, N; Wirtanen, A; Schambra, H
Introduction: Activities of daily living (ADLs) are performed through a sequence of fundamental units of motion, called primitives. We previously observed that during ADLs, one upper extremity (UE) may engage two objects simultaneously, such as turning on a faucet while holding a toothbrush. These dual-object primitives (DOPs) may demand increased neural resources, as they likely entail the simultaneous execution of two motor plans. Skilled movement by the nondominant healthy UE or the paretic UE has also been found to require increased neural activity. We posited that performance of DOPs would exceed the neural resources available to the nondominant or paretic side, reducing their performance on these sides. We also predicted that the frequency of DOP performance by the paretic UE would relate to its degree of motor impairment.
Method(s): We studied 19 right-hand dominant healthy subjects (10M:9F; 62.0 +/- 13.6 years) and 43 premorbidly right-hand dominant stroke subjects (23M:20F; 24L:19R paretic; 57.5 +/- 14.5 years; 5.7 +/- 6.5 years post stroke). We evaluated subjects on the UE Fugl-Meyer Assessment (FMA) and videotaped their performance of a feeding and toothbrushing task. We analyzed the videos to extract the incidence and count of DOP performance by each UE. To control for dominance and paresis, we normalized DOP counts to the total number of primitives performed by the UE. We used two-tailed Fisher's Exact tests to compare the incidence of DOPs performed by each UE, and Spearman's correlation to examine the relationship between FMA score and DOP frequency.
Result(s): In healthy subjects, the incidence of DOPs was lower on the nondominant than dominant side (12/19 vs. 19/19; p<0.01). In stroke subjects, the incidence of DOPs was lower on the paretic than nonparetic side (19/43 vs. 43/43; p<0.01). The laterality of paresis did not affect whether that UE would perform DOPs (11/19 dominant paretic vs. 8/24 nondominant paretic; p=0.132). In stroke subjects, lower FMA scores were related to a lower frequency of DOP performance on their paretic UE (rho=0.368, p=0.015).
Discussion(s): Our results suggest that UE laterality and impairment may impact DOP performance in healthy and stroke subjects, respectively. DOPs were less commonly performed by the nondominant UE and the paretic UE, and worse impairment was associated with lower DOP performance. We speculate that engaging two objects simultaneously requires additional neural resources that are unavailable to the nondominant or injured motor network. It is conceivable that the return of DOP performance by the paretic UE may track with the availability of a recovered neural substrate.
EMBASE:636605268
ISSN: 1552-6844
CID: 5078492
Estimating impairment from functional task performance [Meeting Abstract]
Parnandi, A; Venkatesan, A; Pandit, N; Wirtanen, A; Fokas, E; Kim, G; Nilsen, D; Schambra, H
Introduction: Quantifying upper extremity (UE) motor impairment after stroke is impractical, limiting our ability to tailor rehabilitation training in real time. The current gold-standard measure of impairment, the Fugl-Meyer Assessment (FMA), is time-consuming and requires a trained assessor. The FMA furthermore does not assess functional motions in real-world contexts, which is exactly where we aim our rehabilitation interventions. Here, we took initial steps to develop an approach to automatically quantify UE motor impairment during functional task performance.
Method(s): We studied 51 chronic stroke patients (28F:23M; 57.7 (21.3-84.3) years old; 28L:23R paretic; FMA 43.1 (8-65)).We recorded upper body motion with 9 inertial measurement units (IMUs) while patients performed the FMA and a functional task (moving an object on a horizontal 8-target array). We trained a long short-term memory (LSTM) deep learning model to estimate FMA scores from the recorded motion (training set n=40; test set n=11; 4 LSTM layers with between-layer batch normalization; IMU data windows of 4s with slide of 1s). LSTM-generated impairment scores were computed from FMA motions or from functional motions. To ascertain the accuracy of the approach, we calculated the root mean square error (RMSE) and the Spearman correlation coefficient (rho) between the LSTM scores and the FMA scores from a trained expert. We also examined whether the performance of particular classes of functional primitives (i.e. reach, transport, or reposition) would be sufficient to accurately estimate impairment.
Result(s): Using motions from the FMA performance, our approach estimated FMA scores within 1.1 points of a trained assessor. Using motions from the functional task performance, our approach estimated FMA scores within 1.6 points. Correlation values between the FMA scores and LSTM scores were rho = 0.98 for FMA motions and rho = 0.96 for functional motions. Among the three functional primitives, reaches were the most informative for estimating the impairment scores (RMSE: 1.9 points), followed by transports (RMSE: 2.1 points), and repositions (RMSE: 2.8 points).
Discussion(s): We present a new approach that uses sensor-based motion capture and deep learning to automatically estimate UE motor impairment. This approach has high accuracy and shows high concurrent validity with the FMA, even when it assesses unrelated functional motions. Thus, it may be possible to directly measure impairment from performance of real-world functional tasks, which the FMA does not offer. Estimating impairment during stroke rehabilitation would enable clinicians to tailor treatment strategy in real time.
EMBASE:636605242
ISSN: 1552-6844
CID: 5078502
The Efficacy of Transfusion After Placement of an Automated Blood Bank Storage System in the Intensive Care Unit [Meeting Abstract]
Bangalore, Raksha; Sommer, Philip; Cuff, Germaine; Zhang, Yan; Wang, Binhuan; Nunnally, Mark
ISI:000752526600156
ISSN: 0003-2999
CID: 5242772
Upper Motor Neuron Influence on Blink Reflex Testing [Meeting Abstract]
Warner, Robin; Marei, Adel
ISI:000704705300410
ISSN: 0364-5134
CID: 5504392
United States Dietary Trends Since 1800: Lack of Association Between Saturated Fatty Acid Consumption and Non-communicable Diseases
Lee, Joyce H; Duster, Miranda; Roberts, Timothy; Devinsky, Orrin
We reviewed data on the American diet from 1800 to 2019. Methods: We examined food availability and estimated consumption data from 1800 to 2019 using historical sources from the federal government and additional public data sources. Results: Processed and ultra-processed foods increased from <5 to >60% of foods. Large increases occurred for sugar, white and whole wheat flour, rice, poultry, eggs, vegetable oils, dairy products, and fresh vegetables. Saturated fats from animal sources declined while polyunsaturated fats from vegetable oils rose. Non-communicable diseases (NCDs) rose over the twentieth century in parallel with increased consumption of processed foods, including sugar, refined flour and rice, and vegetable oils. Saturated fats from animal sources were inversely correlated with the prevalence of NCDs. Conclusions: As observed from the food availability data, processed and ultra-processed foods dramatically increased over the past two centuries, especially sugar, white flour, white rice, vegetable oils, and ready-to-eat meals. These changes paralleled the rising incidence of NCDs, while animal fat consumption was inversely correlated.
PMCID:8805510
PMID: 35118102
ISSN: 2296-861x
CID: 5153862
Prevalence and Predictors of Prolonged Cognitive and Psychological Symptoms Following COVID-19 in the United States
Frontera, Jennifer A; Lewis, Ariane; Melmed, Kara; Lin, Jessica; Kondziella, Daniel; Helbok, Raimund; Yaghi, Shadi; Meropol, Sharon; Wisniewski, Thomas; Balcer, Laura; Galetta, Steven L
Background/Objectives/UNASSIGNED:Little is known regarding the prevalence and predictors of prolonged cognitive and psychological symptoms of COVID-19 among community-dwellers. We aimed to quantitatively measure self-reported metrics of fatigue, cognitive dysfunction, anxiety, depression, and sleep and identify factors associated with these metrics among United States residents with or without COVID-19. Methods/UNASSIGNED:We solicited 1000 adult United States residents for an online survey conducted February 3-5, 2021 utilizing a commercial crowdsourcing community research platform. The platform curates eligible participants to approximate United States demographics by age, sex, and race proportions. COVID-19 was diagnosed by laboratory testing and/or by exposure to a known positive contact with subsequent typical symptoms. Prolonged COVID-19 was self-reported and coded for those with symptoms ≥ 1 month following initial diagnosis. The primary outcomes were NIH PROMIS/Neuro-QoL short-form T-scores for fatigue, cognitive dysfunction, anxiety, depression, and sleep compared among those with prolonged COVID-19 symptoms, COVID-19 without prolonged symptoms and COVID-19 negative subjects. Multivariable backwards step-wise logistic regression models were constructed to predict abnormal Neuro-QoL metrics. Results/UNASSIGNED:= 0.047), but there were no significant differences in quantitative measures of anxiety, depression, fatigue, or sleep. Conclusion/UNASSIGNED:Prolonged symptoms occurred in 25% of COVID-19 positive participants, and NeuroQoL cognitive dysfunction scores were significantly worse among COVID-19 positive subjects, even after accounting for demographic and stressor covariates. Fatigue, anxiety, depression, and sleep scores did not differ between COVID-19 positive and negative respondents.
PMCID:8326803
PMID: 34349633
ISSN: 1663-4365
CID: 5005972