Searched for: school:SOM
Department/Unit:Neuroscience Institute
Evolutionarily conserved brainstem architecture enables gravity-guided vertical navigation
Zhu, Yunlu; Gelnaw, Hannah; Auer, Franziska; Hamling, Kyla R; Ehrlich, David E; Schoppik, David
The sensation of gravity anchors our perception of the environment and is important for navigation. However, the neural circuits that transform gravity into commands for navigation are undefined. We first determined that larval zebrafish (Danio rerio) navigate vertically by maintaining a consistent heading across a series of upward climb or downward dive bouts. Gravity-blind mutant fish swim with more variable heading and excessive veering, leading to less effective vertical navigation. After targeted photoablation of ascending vestibular neurons and spinal projecting midbrain neurons, but not vestibulospinal neurons, vertical navigation was impaired. These data define a sensorimotor circuit that uses evolutionarily conserved brainstem architecture to transform gravitational signals into persistent heading for vertical navigation. The work lays a foundation to understand how vestibular inputs allow animals to move effectively through their environment.
PMID: 39531487
ISSN: 1545-7885
CID: 5752912
High-fidelity Image Restoration of Large 3D Electron Microscopy Volume
Kreinin, Yuri; Gunn, Pat; Chklovskii, Dmitri; Wu, Jingpeng
Volume electron microscopy (VEM) is an essential tool for studying biological structures. Due to the challenges of sample preparation and continuous volumetric imaging, image artifacts are almost inevitable. Such image artifacts complicate further processing both for automated computer vision methods and human experts. Unfortunately, the widely used contrast limited adaptive histogram equalization (CLAHE) can alter the essential relative contrast information about some biological structures. We developed an image-processing pipeline to remove the artifacts and enhance the images without CLAHE. We apply our method to VEM datasets of a Microwasp head. We demonstrate that our method restores the images with high fidelity while preserving the original relative contrast. This pipeline is adaptable to other VEM datasets.
PMID: 39423020
ISSN: 1435-8115
CID: 5718862
Timing matters in olfaction
Karimimehr, Saeed; Rinberg, Dmitry
PMID: 39402255
ISSN: 2397-3374
CID: 5718402
Emerging Brain-to-Content Technologies from Generative AI and Deep Representation Learning
Chen, Zhe Sage
Rapid advances in generative artificial intelligence (AI) and deep representation learning have revolutionized numerous engineering applications in signal processing, computer vision, speech recognition and translation, and natural language processing due to amazingly powerful representation power (e.g., [1,2]). Generative AI-empowered tools, such as ChatGPT and Sora, have fundamentally changed the landscape of human-computer communications research. One emerging application along this line is to link the brain to the computer (i.e., brain-computer interface or BCI) and to develop paradigm-shift brain-to-content technologies. This BCI system upgrade (i.e., BCI 2.0) is empowered by generative AI and deep learning ("new engine") and large amounts of data ("gas"). In this article, we will revisit the old song sung in a new tune, highlight some state-of-the-art progresses, and briefly discuss the future outlook.
PMCID:12333864
PMID: 40786597
ISSN: 1053-5888
CID: 5953442
Resting state functional brain connectivity in child and adolescent psychiatry: where are we now?
Uddin, Lucina Q; Castellanos, F Xavier; Menon, Vinod
Approaching the 30th anniversary of the discovery of resting state functional magnetic resonance imaging (rsfMRI) functional connectivity, we reflect on the impact of this neuroimaging breakthrough on the field of child and adolescent psychiatry. The study of intrinsic functional brain architecture that rsfMRI affords across a wide range of ages and abilities has yielded numerous key insights. For example, we now know that many neurodevelopmental conditions are associated with more widespread circuit alterations across multiple large-scale brain networks than previously suspected. The emergence of population neuroscience and effective data-sharing initiatives have made large rsfMRI datasets publicly available, providing sufficient power to begin to identify brain-based subtypes within heterogeneous clinical conditions. Nevertheless, several methodological and theoretical challenges must still be addressed to fulfill the promises of personalized child and adolescent psychiatry. In particular, incomplete understanding of the physiological mechanisms driving developmental changes in intrinsic functional connectivity remains an obstacle to further progress. Future directions include cross-species and multimodal neuroimaging investigations to illuminate such mechanisms. Data collection and harmonization efforts that span multiple countries and diverse cohorts are urgently needed. Finally, incorporating naturalistic fMRI paradigms such as movie watching should be a priority for future research efforts.
PMID: 38778158
ISSN: 1740-634x
CID: 5654812
Vagus nerve stimulation recruits the central cholinergic system to enhance perceptual learning
Martin, Kathleen A; Papadoyannis, Eleni S; Schiavo, Jennifer K; Fadaei, Saba Shokat; Issa, Habon A; Song, Soomin C; Valencia, Sofia Orrey; Temiz, Nesibe Z; McGinley, Matthew J; McCormick, David A; Froemke, Robert C
Perception can be refined by experience, up to certain limits. It is unclear whether perceptual limits are absolute or could be partially overcome via enhanced neuromodulation and/or plasticity. Recent studies suggest that peripheral nerve stimulation, specifically vagus nerve stimulation (VNS), can alter neural activity and augment experience-dependent plasticity, although little is known about central mechanisms recruited by VNS. Here we developed an auditory discrimination task for mice implanted with a VNS electrode. VNS applied during behavior gradually improved discrimination abilities beyond the level achieved by training alone. Two-photon imaging revealed VNS induced changes to auditory cortical responses and activated cortically projecting cholinergic axons. Anatomical and optogenetic experiments indicated that VNS can enhance task performance through activation of the central cholinergic system. These results highlight the importance of cholinergic modulation for the efficacy of VNS and may contribute to further refinement of VNS methodology for clinical conditions.
PMID: 39284963
ISSN: 1546-1726
CID: 5720172
Alzheimer Disease-Related Biomarkers in Patients on Maintenance Hemodialysis
Masurkar, Arjun V; Bansal, Nisha; Prince, David K; Winkelmayer, Wolfgang C; Ortiz, Daniela F; Ramos, Gianna; Soomro, Qandeel; Vedvyas, Alok; Osorio, Ricardo S; Bernard, Mark A; Debure, Ludovic; Ahmed, Wajiha; Boutajangout, Allal; Wisniewski, Thomas; Charytan, David M
PMCID:11440795
PMID: 39350957
ISSN: 2590-0595
CID: 5703332
Neuronal hypofunction and network dysfunction in a mouse model at an early stage of tauopathy
Ji, Changyi; Yang, Xiaofeng; Eleish, Mohamed; Jiang, Yixiang; Tetlow, Amber M; Song, Soomin C; Martín-Ávila, Alejandro; Wu, Qian; Zhou, Yanmei; Gan, Wenbiao; Lin, Yan; Sigurdsson, Einar M
INTRODUCTION/BACKGROUND:It is unclear how early neuronal deficits occur in tauopathies, if these are associated with changes in neuronal network activity, and if they can be alleviated with therapies. METHODS:imaging in tauopathy mice at 6 versus 12 months, compared to controls, and treated the younger animals with a tau antibody. RESULTS:Neuronal function was impaired at 6 months but did not deteriorate further at 12 months, presumably because cortical tau burden was comparable at these ages. At 6 months, neurons were mostly hypoactive, with enhanced neuronal synchrony, and had dysregulated responses to stimulus. Ex vivo, electrophysiology revealed altered synaptic transmission and enhanced excitability of motor cortical neurons, which likely explains the altered network activity. Acute tau antibody treatment reduced pathological tau and gliosis and partially restored neuronal function. DISCUSSION/CONCLUSIONS:Tauopathies are associated with early neuronal deficits that can be attenuated with tau antibody therapy. HIGHLIGHTS/CONCLUSIONS:Neuronal hypofunction in awake and behaving mice in early stages of tauopathy. Altered network activity disrupted local circuitry engagement in tauopathy mice. Enhanced neuronal excitability and altered synaptic transmission in tauopathy mice. Tau antibody acutely reduced soluble phospho-tau and improved neuronal function.
PMID: 39368113
ISSN: 1552-5279
CID: 5710692
The perils and the promise of whole-body MRI: why we may be debating the wrong things
Sodickson, Daniel K
PMID: 39251175
ISSN: 1558-349x
CID: 5690082
Neural circuits for goal-directed navigation across species
Basu, Jayeeta; Nagel, Katherine
Across species, navigation is crucial for finding both resources and shelter. In vertebrates, the hippocampus supports memory-guided goal-directed navigation, whereas in arthropods the central complex supports similar functions. A growing literature is revealing similarities and differences in the organization and function of these brain regions. We review current knowledge about how each structure supports goal-directed navigation by building internal representations of the position or orientation of an animal in space, and of the location or direction of potential goals. We describe input pathways to each structure - medial and lateral entorhinal cortex in vertebrates, and columnar and tangential neurons in insects - that primarily encode spatial and non-spatial information, respectively. Finally, we highlight similarities and differences in spatial encoding across clades and suggest experimental approaches to compare coding principles and behavioral capabilities across species. Such a comparative approach can provide new insights into the neural basis of spatial navigation and neural computation.
PMID: 39393938
ISSN: 1878-108x
CID: 5706412