Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14183


A novel rat model for subchondral microdamage in acute knee injury: a potential mechanism in post-traumatic osteoarthritis

Ramme, Austin J; Lendhey, Matin; Raya, Jose G; Kirsch, Thorsten; Kennedy, Oran D
OBJECTIVE: Subchondral microdamage may play an important role in post-traumatic osteoarthritis (PTOA) development following ACL rupture. It remains unknown whether this injury mechanism causes subchondral microdamage, or whether its repair occurs by targeted osteoclast-mediated remodeling. If so these events may represent a mechanism by which subchondral bone is involved in PTOA. Our objective was to test the hypothesis that subchondral microdamage occurs, and is co-localized with remodeling, in a novel rat model of ACL rupture. DESIGN: We developed a novel non-invasive rat animal model for ACL rupture and subchondral microdamage generation. By inducing ACL rupture noninvasively rather than surgically, this more closely mimics the clinical injury. MicroCT, MRI and histological methods were used to measure microstructural changes, ligament damage, and cellular/matrix degeneration, respectively. RESULTS: We reproducibly generated ACL rupture without damage to other soft joint tissues. Immediately after injury, increased microdamage was found in the postero-medial aspect of the tibia. Microstructural parameters showed increased resorption at 2 weeks, which returned to baseline. Dynamic histomorphometry showed increased calcein label uptake in the same region at 4 and 8 weeks. Chondrocyte death and protease activity in cartilage was also noted, however whether this was directly linked to subchondral changes is not yet known. Similarly, cartilage scoring showed degradation at 4 and 8 weeks post-injury. CONCLUSIONS: This study shows that our novel model can be used to study subchondral microdamage after ACL-rupture, and its association with localized remodeling. Cartilage degeneration, on a similar time-scale to other models, is also a feature of this system.
PMID: 27235904
ISSN: 1522-9653
CID: 2115212

Long and short (timeframe) of endoplasmic reticulum stress-induced cell death

Ryoo, Hyung Don
A number of age-dependent degenerative diseases are caused by chronic endoplasmic reticulum (ER) stress in vital cells. In many cases, the afflicted cells suffer from ER stress since birth, but the death of irreplaceable cells occurs only late in life. Although our understanding of ER stress-induced cell death has advanced significantly, most of the known mechanisms involve pathways that signal within hours, and it remains unclear how these pathways regulate cell death that occurs only decades later. Here, I highlight the conceptual issues and suggest ways to make sense of the age-related effect of ER stress-induced cell death in degenerative diseases
PMCID:5656986
PMID: 27191701
ISSN: 1742-4658
CID: 2112192

Binding of periostin to discoidin domain receptor-1 (DDR1) promotes cartilage degeneration by inducing MMP-13 expression [Meeting Abstract]

Qing, Y; Mignatti, P; Ramme, A; Kirsch, T; Patel, J; Attur, M
Background/Purpose: We and others have previously shown that periostin (Postn) expression is dramatically elevated in cartilage and sub-chondral bone in OA patients and surgical models of OA (medial meniscectomy and anterior crucial ligament resection or PMX, partial meniscectomy) in rodents. In vitro Postn promotes collagen and proteoglycan degradation in human chondrocytes by upregulating MMP-13 and ADAMTS4 expression. Postn controls gene expression in bone cells by interacting with avb3 integrin. However, the nature of periostin receptor(s) in chondrocytes is unknown. DDR1, a collagen-binding receptor tyrosine kinase highly expressed in chondrocytes, controls MMP-13 expression during chondrogenesis. Therefore, we hypothesized that the effect of Postn on chondrocytes is mediated by DDR1 and Postn-deficient mice (Postn-/-) are protected from surgically-induced post-traumatic OA. Methods: (Postn-/-) mice were purchased from Jackson Laboratory (B6;129-Postntm1Jmol/J Stock No: 009067). We subjected 3- months old littermates (Postn+/+, Postn+/- and Postn-/-) to partial medial meniscectomy (PMX) or sham surgery, and harvested the knee joints 8 week post-surgery for histological assessment of OA progression. Human OA chondrocytes cultures were incubated in the presence or absence of the DDR1 inhibitor DDR1-IN-1 dihydrochloridein (100-500 nM) for 2 h before addition of Postn (1 mug/ml) or control vehicle to the culture medium. MMP-13 levels were determined by ELISA 24 h post stimulation. Results: We observed abundant expression of DDR1 mRNA in human chondrocytes and we found comparable levels of DDR1 in OA and normal cartilage. However, Postn expression was 3-4 times as high in OA than in normal cartilage. Pre-incubation of human cartilage explants or cultured chondrocytes with DDR1-IN-1 dihydrochloridein inhibited both constitutive and Postn-induced MMP-13 expression in a dose-dependent manner. In contrast, neutralizing antibody to alphavbeta3 integrin had no effect on Postn induction of MMP-13 expression. Co-immunoprecipitation experiments showed that Postn physically interacts with DDR1 in human chondrocytes. Furthermore, Postn-/- mice showed reduced PMX-induced cartilage degeneration and osteophyte formation, and both Postn+/- and Postn-/- mice had reduced subchondral bone thickening, relative to Postn+/+ mice. Conclusion: Postn-/- mice are protected from surgically-induced post-traumatic OA, showing that Postn promotes cartilage degeneration. DDR1 mediates the stimulatory effect of Postn on MMP-13 expression. Further studies are in progress to investigate the potential of periostin as a druggable target for the treatment of OA
EMBASE:613888787
ISSN: 2326-5205
CID: 2397892

Transcriptional regulation of E-cadherin by small activating RNA: A new double-stranded RNA

Wu, Zhiming; Li, Yan; Li, Zhiyong; Liu, Zhuowei; Qin, Zike; Li, Xiangdong; Ye, Yunlin; Bu, Lei; Lin, Bin; Wang, Zhanyu; Jia, Guojin; Chen, Gang
Recent studies have reported that chemically synthesized small activating RNA (saRNA) targeting the promoter regions of a gene can activate its expression in different cell lines. This technique can be a powerful therapeutic method for diseases caused by complete inactivation or reduced expression of specific genes. E-cadherin is a typical tumor suppressor gene. Loss of E-cadherin mediates the transition from benign lesions to invasive, metastatic cancer. In this study, several 21-nt small double-stranded RNAs (dsRNAs) targeting the promoter regions of human E-cadherin were designed and synthesized and the features of their function were investigated to study the regulatory role of dsRNA on E-cadherin expression. A new saRNA (dsEcad661) that can enhance E-cadherin expression by targeting non-coding regulatory regions in gene promoters was identified. Using dsRNA with modified base quantity and cholesterol-conjugated dsRNA, we found the antisense strand may be the guide strand of saRNA in the upregulation of E-cadherin. These findings provide several important pieces of evidence that may improve understanding of the function of saRNA and may promote its development for clinical application.
PMID: 27498620
ISSN: 1791-2423
CID: 2213512

Protein sequences bound to mineral surfaces persist into deep time

Demarchi, Beatrice; Hall, Shaun; Roncal-Herrero, Teresa; Freeman, Colin L; Woolley, Jos; Crisp, Molly K; Wilson, Julie; Fotakis, Anna; Fischer, Roman; Kessler, Benedikt M; Rakownikow Jersie-Christensen, Rosa; Olsen, Jesper V; Haile, James; Thomas, Jessica; Marean, Curtis W; Parkington, John; Presslee, Samantha; Lee-Thorp, Julia; Ditchfield, Peter; Hamilton, Jacqueline F; Ward, Martyn W; Wang, Chunting Michelle; Shaw, Marvin D; Harrison, Terry; Domínguez-Rodrigo, Manuel; MacPhee, Ross DE; Kwekason, Amandus; Ecker, Michaela; Kolska Horwitz, Liora; Chazan, Michael; Kröger, Roland; Thomas-Oates, Jane; Harding, John H; Cappellini, Enrico; Penkman, Kirsty; Collins, Matthew J
Proteins persist longer in the fossil record than DNA, but the longevity, survival mechanisms and substrates remain contested. Here, we demonstrate the role of mineral binding in preserving the protein sequence in ostrich (Struthionidae) eggshell, including from the palaeontological sites of Laetoli (3.8 Ma) and Olduvai Gorge (1.3 Ma) in Tanzania. By tracking protein diagenesis back in time we find consistent patterns of preservation, demonstrating authenticity of the surviving sequences. Molecular dynamics simulations of struthiocalcin-1 and -2, the dominant proteins within the eggshell, reveal that distinct domains bind to the mineral surface. It is the domain with the strongest calculated binding energy to the calcite surface that is selectively preserved. Thermal age calculations demonstrate that the Laetoli and Olduvai peptides are 50 times older than any previously authenticated sequence (equivalent to ~16 Ma at a constant 10°C).
PMCID:5039028
PMID: 27668515
ISSN: 2050-084x
CID: 3091342

Cerebral [18 F]T807/AV1451 retention pattern in clinically probable CTE resembles pathognomonic distribution of CTE tauopathy

Dickstein, D L; Pullman, M Y; Fernandez, C; Short, J A; Kostakoglu, L; Knesaurek, K; Soleimani, L; Jordan, B D; Gordon, W A; Dams-O'Connor, K; Delman, B N; Wong, E; Tang, C Y; DeKosky, S T; Stone, J R; Cantu, R C; Sano, M; Hof, P R; Gandy, S
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disorder most commonly associated with repetitive traumatic brain injury (TBI) and characterized by the presence of neurofibrillary tangles of tau protein, known as a tauopathy. Currently, the diagnosis of CTE can only be definitively established postmortem. However, a new positron emission tomography (PET) ligand, [18F]T807/AV1451, may provide the antemortem detection of tau aggregates, and thus various tauopathies, including CTE. Our goal was to examine [18F]T807/AV1451 retention in athletes with neuropsychiatric symptoms associated with a history of multiple concussions. Here we report a 39-year-old retired National Football League player who suffered 22 concussions and manifested progressive neuropsychiatric symptoms. Emotional lability and irritability were the chief complaints. Serial neuropsychological exams revealed a decline in executive functioning, processing speed and fine motor skills. Naming was below average but other cognitive functions were preserved. Structural analysis of longitudinally acquired magenetic resonance imaging scans revealed cortical thinning in the left frontal and lateral temporal areas, as well as volume loss in the basal ganglia. PET with [18F]florbetapir was negative for amyloidosis. The [18F]T807/AV1451 PET showed multifocal areas of retention at the cortical gray matter-white matter junction, a distribution considered pathognomonic for CTE. [18F]T807/AV1451 standard uptake value (SUV) analysis showed increased uptake (SUVr⩾1.1) in bilateral cingulate, occipital, and orbitofrontal cortices, and several temporal areas. Although definitive identification of the neuropathological underpinnings basis for [18F]T807/AV1451 retention requires postmortem correlation, our data suggest that [18F]T807/AV1451 tauopathy imaging may be a promising tool to detect and diagnose CTE-related tauopathy in living subjects.
PMCID:5048212
PMID: 27676441
ISSN: 2158-3188
CID: 2911372

Dual role of the integrated stress response in medulloblastoma tumorigenesis

Stone, Sarrabeth; Ho, Yeung; Li, Xiting; Jamison, Stephanie; Harding, Heather P; Ron, David; Lin, Wensheng
In response to endoplasmic reticulum (ER) stress, activation of pancreatic ER kinase (PERK) coordinates an adaptive program known as the integrated stress response (ISR) by phosphorylating translation initiation factor 2α (eIF2α). Phosphorylated eIF2α is quickly dephosphorylated by the protein phosphatase 1 and growth arrest and DNA damage 34 (GADD34) complex. Data indicate that the ISR can either promote or suppress tumor development. Our previous studies showed that the ISR is activated in medulloblastoma in both human patients and animal models, and that the decreased ISR via PERK heterozygous deficiency attenuates medulloblastoma formation in Patched1 heterozygous deficient (Ptch1+/-) mice by enhancing apoptosis of pre-malignant granule cell precursors (GCPs) during cell transformation. We showed here that GADD34 heterozygous mutation moderately enhanced the ISR and noticeably increased the incidence of medulloblastoma in adult Ptch1+/- mice. Surprisingly, GADD34 homozygous mutation strongly enhanced the ISR, but significantly decreased the incidence of medulloblastoma in adult Ptch1+/- mice. Intriguingly, GADD34 homozygous mutation significantly enhanced pre-malignant GCP apoptosis in cerebellar hyperplastic lesions and reduced the lesion numbers in young Ptch1+/- mice. Nevertheless, neither GADD34 heterozygous mutation nor GADD34 homozygous mutation had a significant effect on medulloblastoma cells in adult Ptch1+/- mice. Collectively, these data imply the dual role of the ISR, promoting and inhibiting, in medulloblastoma tumorigenesis by regulating apoptosis of pre-malignant GCPs during the course of malignant transformation.
PMCID:5325430
PMID: 27802424
ISSN: 1949-2553
CID: 3093062

Myelinating glia differentiation is regulated by extracellular matrix elasticity

Urbanski, Mateusz M; Kingsbury, Lyle; Moussouros, Daniel; Kassim, Imran; Mehjabeen, Saraf; Paknejad, Navid; Melendez-Vasquez, Carmen V
The mechanical properties of living tissues have a significant impact on cell differentiation, but remain unexplored in the context of myelin formation and repair. In the PNS, the extracellular matrix (ECM) incorporates a basal lamina significantly denser than the loosely organized CNS matrix. Inhibition of non-muscle myosin II (NMII) enhances central but impairs peripheral myelination and NMII has been implicated in cellular responses to changes in the elasticity of the ECM. To directly evaluate whether mechanotransduction plays a role in glial cell differentiation, we cultured Schwann cells (SC) and oligodendrocytes (OL) on matrices of variable elastic modulus, mimicking either their native environment or conditions found in injured tissue. We found that a rigid, lesion-like matrix inhibited branching and differentiation of OL in NMII-dependent manner. By contrast, SC developed normally in both soft and stiffer matrices. Although SC differentiation was not significantly affected by changes in matrix stiffness alone, we found that expression of Krox-20 was potentiated on rigid matrices at high laminin concentration. These findings are relevant to the design of biomaterials to promote healing and regeneration in both CNS and PNS, via transplantation of glial progenitors or the implantation of tissue scaffolds.
PMCID:5028715
PMID: 27646171
ISSN: 2045-2322
CID: 3090902

Differential timing of granule cell production during cerebellum development underlies generation of the foliation pattern

Legué, Emilie; Gottshall, Jackie L; Jaumouillé, Edouard; Roselló-Díez, Alberto; Shi, Wei; Barraza, Luis Humberto; Washington, Senna; Grant, Rachel L; Joyner, Alexandra L
BACKGROUND:The mouse cerebellum (Cb) has a remarkably complex foliated three-dimensional (3D) structure, but a stereotypical cytoarchitecture and local circuitry. Little is known of the cellular behaviors and genes that function during development to determine the foliation pattern. In the anteroposterior axis the mammalian cerebellum is divided by lobules with distinct sizes, and the foliation pattern differs along the mediolateral axis defining a medial vermis and two lateral hemispheres. In the vermis, lobules are further grouped into four anteroposterior zones (anterior, central, posterior and nodular zones) based on genetic criteria, and each has distinct lobules. Since each cerebellar afferent group projects to particular lobules and zones, it is critical to understand how the 3D structure of the Cb is acquired. During cerebellar development, the production of granule cells (gcs), the most numerous cell type in the brain, is required for foliation. We hypothesized that the timing of gc accumulation is different in the four vermal zones during development and contributes to the distinct lobule morphologies. METHODS AND RESULTS:In order to test this idea, we used genetic inducible fate mapping to quantify accumulation of gcs in each lobule during the first two postnatal weeks in mice. The timing of gc production was found to be particular to each lobule, and delayed in the central zone lobules relative to the other zones. Quantification of gc proliferation and differentiation at three time-points in lobules representing different zones, revealed the delay involves a later onset of maximum differentiation and prolonged proliferation of gc progenitors in the central zone. Similar experiments in Engrailed mutants (En1 (-/+) ;En2 (-/-) ), which have a smaller Cb and altered foliation pattern preferentially outside the central zone, showed that gc production, proliferation and differentiation are altered such that the differences between zones are attenuated compared to wild-type mice. CONCLUSIONS:Our results reveal that gc production is differentially regulated in each zone of the cerebellar vermis, and our mutant analysis indicates that the dynamics of gc production plays a role in determining the 3D structure of the Cb.
PMCID:5017010
PMID: 27609139
ISSN: 1749-8104
CID: 3090292

gammadelta T Cells Support Pancreatic Oncogenesis by Restraining alphabeta T Cell Activation

Daley, Donnele; Zambirinis, Constantinos Pantelis; Seifert, Lena; Akkad, Neha; Mohan, Navyatha; Werba, Gregor; Barilla, Rocky; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu Raj Kumar; Avanzi, Antonina; Tippens, Daniel; Narayanan, Rajkishen; Jang, Jung-Eun; Newman, Elliot; Pillarisetty, Venu Gopal; Dustin, Michael Loran; Bar-Sagi, Dafna; Hajdu, Cristina; Miller, George
Inflammation is paramount in pancreatic oncogenesis. We identified a uniquely activated gammadeltaT cell population, which constituted approximately 40% of tumor-infiltrating T cells in human pancreatic ductal adenocarcinoma (PDA). Recruitment and activation of gammadeltaT cells was contingent on diverse chemokine signals. Deletion, depletion, or blockade of gammadeltaT cell recruitment was protective against PDA and resulted in increased infiltration, activation, and Th1 polarization of alphabetaT cells. Although alphabetaT cells were dispensable to outcome in PDA, they became indispensable mediators of tumor protection upon gammadeltaT cell ablation. PDA-infiltrating gammadeltaT cells expressed high levels of exhaustion ligands and thereby negated adaptive anti-tumor immunity. Blockade of PD-L1 in gammadeltaT cells enhanced CD4+ and CD8+ T cell infiltration and immunogenicity and induced tumor protection suggesting that gammadeltaT cells are critical sources of immune-suppressive checkpoint ligands in PDA. We describe gammadeltaT cells as central regulators of effector T cell activation in cancer via novel cross-talk.
PMCID:5017923
PMID: 27569912
ISSN: 1097-4172
CID: 2232382