Searched for: school:SOM
Department/Unit:Neuroscience Institute
Metabolic diagnosis and medical prevention of calcium nephrolithiasis and its systemic manifestations: a consensus statement
Gambaro, Giovanni; Croppi, Emanuele; Coe, Fredric; Lingeman, James; Moe, Orson; Worcester, Elen; Buchholz, Noor; Bushinsky, David; Curhan, Gary C; Ferraro, Pietro Manuel; Fuster, Daniel; Goldfarb, David S; Heilberg, Ita Pfeferman; Hess, Bernard; Lieske, John; Marangella, Martino; Milliner, Dawn; Preminger, Glen M; Reis Santos, Jose' Manuel; Sakhaee, Khashayar; Sarica, Kemal; Siener, Roswitha; Strazzullo, Pasquale; Williams, James C
BACKGROUND: Recently published guidelines on the medical management of renal stone disease did not address relevant topics in the field of idiopathic calcium nephrolithiasis, which are important also for clinical research. DESIGN: A steering committee identified 27 questions, which were proposed to a faculty of 44 experts in nephrolithiasis and allied fields. A systematic review of the literature was conducted and 5216 potentially relevant articles were selected; from these, 407 articles were deemed to provide useful scientific information. The Faculty, divided into working groups, analysed the relevant literature. Preliminary statements developed by each group were exhaustively discussed in plenary sessions and approved. RESULTS: Statements were developed to inform clinicians on the identification of secondary forms of calcium nephrolithiasis and systemic complications; on the definition of idiopathic calcium nephrolithiasis; on the use of urinary tests of crystallization and of surgical observations during stone treatment in the management of these patients; on the identification of patients warranting preventive measures; on the role of fluid and nutritional measures and of drugs to prevent recurrent episodes of stones; and finally, on the cooperation between the urologist and nephrologist in the renal stone patients. CONCLUSIONS: This document has addressed idiopathic calcium nephrolithiasis from the perspective of a disease that can associate with systemic disorders, emphasizing the interplay needed between urologists and nephrologists. It is complementary to the American Urological Association and European Association of Urology guidelines. Future areas for research are identified.
PMCID:5080344
PMID: 27456839
ISSN: 1724-6059
CID: 2287812
A viral strategy for targeting and manipulating interneurons across vertebrate species
Dimidschstein, Jordane; Chen, Qian; Tremblay, Robin; Rogers, Stephanie L; Saldi, Giuseppe-Antonio; Guo, Lihua; Xu, Qing; Liu, Runpeng; Lu, Congyi; Chu, Jianhua; Avery, Michael C; Rashid, Mohammad S; Baek, Myungin; Jacob, Amanda L; Smith, Gordon B; Wilson, Daniel E; Kosche, Georg; Kruglikov, Illya; Rusielewicz, Tomasz; Kotak, Vibhakar C; Mowery, Todd M; Anderson, Stewart A; Callaway, Edward M; Dasen, Jeremy S; Fitzpatrick, David; Fossati, Valentina; Long, Michael A; Noggle, Scott; Reynolds, John H; Sanes, Dan H; Rudy, Bernardo; Feng, Guoping; Fishell, Gord
A fundamental impediment to understanding the brain is the availability of inexpensive and robust methods for targeting and manipulating specific neuronal populations. The need to overcome this barrier is pressing because there are considerable anatomical, physiological, cognitive and behavioral differences between mice and higher mammalian species in which it is difficult to specifically target and manipulate genetically defined functional cell types. In particular, it is unclear the degree to which insights from mouse models can shed light on the neural mechanisms that mediate cognitive functions in higher species, including humans. Here we describe a novel recombinant adeno-associated virus that restricts gene expression to GABAergic interneurons within the telencephalon. We demonstrate that the viral expression is specific and robust, allowing for morphological visualization, activity monitoring and functional manipulation of interneurons in both mice and non-genetically tractable species, thus opening the possibility to study GABAergic function in virtually any vertebrate species.
PMCID:5348112
PMID: 27798629
ISSN: 1546-1726
CID: 2297132
Attentional function and basal forebrain cholinergic neuron morphology during aging in the Ts65Dn mouse model of Down syndrome
Powers, Brian E; Velazquez, Ramon; Kelley, Christy M; Ash, Jessica A; Strawderman, Myla S; Alldred, Melissa J; Ginsberg, Stephen D; Mufson, Elliott J; Strupp, Barbara J
Individuals with Down syndrome (DS) exhibit intellectual disability and develop Alzheimer's disease-like neuropathology during the third decade of life. The Ts65Dn mouse model of DS exhibits key features of both disorders, including impairments in learning, attention and memory, as well as atrophy of basal forebrain cholinergic neurons (BFCNs). The present study evaluated attentional function in relation to BFCN morphology in young (3 months) and middle-aged (12 months) Ts65Dn mice and disomic (2N) controls. Ts65Dn mice exhibited attentional dysfunction at both ages, with greater impairment in older trisomics. Density of BFCNs was significantly lower for Ts65Dn mice independent of age, which may contribute to attentional dysfunction since BFCN density was positively associated with performance on an attention task. BFCN volume decreased with age in 2N but not Ts65Dn mice. Paradoxically, BFCN volume was greater in older trisomic mice, suggestive of a compensatory response. In sum, attentional dysfunction occurred in both young and middle-aged Ts65Dn mice, which may in part reflect reduced density and/or phenotypic alterations in BFCNs.
PMCID:4929047
PMID: 26719290
ISSN: 1863-2661
CID: 1895252
Longitudinal MEMRI characterization of a novel mouse medulloblastoma model [Meeting Abstract]
Rallapalli, H; Volkova, E; Tan, I -L; Wojcinski, A; Joyner, A L; Turnbull, D H
In vivo imaging modalities provide powerful tools for the noninvasive longitudinal characterization of preclinical cancer models. Medulloblastoma (MB) is the most common malignant brain tumor in children, and the subject of intense research, much of which involves mouse models. Manganese-enhanced magnetic resonance imaging (MEMRI) produces unparalleled images of the cerebellum, the site of most MBs [1,2]. For this reason, longitudinal MEMRI of preclinical medulloblastoma models enables analysis of the region of origin, monitoring of tumor progression, and treatment response evaluation. In this study, we present the initial MEMRI characterization of a novel mouse medulloblastoma model with an activating mutation in the Smo gene, which exhibit different growth characteristics than those observed in previous studies of Ptch1 knockout mice [1]. SmoM2 mice were engineered by crossing Atoh1-CreER [3] male mice with homozygous R26-floxedSTOP-SmoM2 females [4]. The SmoM2 mutation was induced by subcutaneous injection of low dose (1mug/g) Tamoxifen (TMX) at postnatal day P2. Biweekly imaging sessions using 7-Tesla MRI (Bruker) began at postnatal day P21. MnCl2 (50-60 mg/kg) was injected intraperitoneally 24 hours before imaging. Scan protocol: 1 min low-resolution pilot, 20 min 150mum resolution T1-weighted GE sequence (TE/TR = 4/30 ms; FA = 20degree; FOV = 19.2 mm x 19.2 mm x 12 mm; Matrix = 128 x 128 x 80). Images were analyzed in 3-space using Amira and Fiji. Morphological characterization was corroborated with histology as shown in Fig1. Longitudinal MEMRI results are summarized in Fig2. Based on our preliminary results, all SmoM2 mice had preneoplastic lesions, while approximately half developed into full tumor morphology (n=21). Of the mice with tumors, approximately 72% developed bilateral tumors and the remaining developed tumors in either the right or left hemisphere. Approximately 50% of animals with bilateral tumors exhibited regression in one lateral tumor and progression in the other, or progression in both tumors (n=8). General disease progression is as follows: at approximately postnatal week W3, small lesions are apparent in the majority of interlobule spaces including the mid vermis; at ~W7, regions of proliferative lesion thickening are apparent and smaller lesions regress; at ~W13 significant tumor encroachment into the forebrain as well as expansion of the third and fourth ventricles are apparent. Tumors were observed to originate in the posterior hemispheres, shift and compress the normal appearing cerebellum as they progress, and finally encroach into the forebrain. Estimated tumor volume doubling time is approximately 4.5 days at early timepoints (W11.5). Noticeable symptoms - including delayed tail-pull reflex, ataxia, and hydrocephalus - in SmoM2 mice were apparent as early as W10. In addition to qualitative understanding of tumor progression, we have manually segmented and quantified tumor volume at these key timepoints in an effort to produce a unified growth model. Current efforts in automated segmentation and hierarchical clustering-based classification of tumors will guide upcoming preclinical trials of anticancer therapeutics
EMBASE:613981388
ISSN: 1860-2002
CID: 2415662
Development and evaluation of an automated atlas-based data analysis method for dynamic microPET mouse brain studies [Meeting Abstract]
Mikheev, A; Logan, J; Baron, M; Malik, N; Mendoza, S; Tuchman, D; Rajamohamed, S; Hameetha, B; Herline, K; Sigurdsson, E M; Wisniewski, T; Fieremans, E; Rusinek, H; Ding, Y -S
Objectives: MicroPET imaging has been increasingly performed on mouse models for a variety of human CNS disorders. Despite high demand, digital mouse brain atlases based on PET are still lacking. Further, most microPET systems do not provide means of mapping mouse brain with atlas. For quantitative data analysis and accurate anatomical localization, the development and evaluation of an automated atlas-based data analysis on microPET mouse brain studies is presented. Methods: MicroPET imaging studies were performed after injection of F-18 labeled Amyvid (a tracer for imaging amyloid (Aa) plaques) in isoflurane-anesthetized adult mice using Inveon PET/CT (Siemens). The list mode dynamic PET data were collected for 30-60 min and rebinned using a Fourier rebinning algorithm. A CT scan was also performed for attenuation correction and anatomical co-registration. A 3D digital magnetic resonance microscopy (MRM)-based volume of interest (VOI) atlas generated from live C57BL/6J adult mouse brain was used for brain mapping (Ma et al., 2008). Landmarks, including left and right centroids of midears and eyes (4 landmarks), were generated on atlas template and individual mouse CT images. Co-registration of atlas, CT and PET was performed using Firevoxel (FVX) (https://urldefense.proofpoint.com/v2/url?u=https- 3A__wp.nyu.edu_Firevoxel&d=DgIBAg&c=j5oPpO0eBH1iio48DtsedbOBGmuw5jHLjgvtN2r4ehE&r=KRXe NoRy5_8lkSwAJG5vjS1yT0aFSItfe494dmkdSVs&m=B4bFtJccWjUzJ- dbK1qURkxJmihDqjf87yIgZlYKTMk&s=soyp2V3_QGPs--q8qXcfkDHjv7kMngxeekpEknOQoi8&e= ) and time-activity curves (TAC) for 20 specific 3D brain regions were generated. For comparison, an expert in mouse neuroanatomy manually drew corresponding VOIs on PET-CT co-registered images derived from IRW (Inveon data analysis software without atlas). The TACs thus generated via both methods were compared. For further evaluation, the tracer uptake and kinetics in both tau and Aa transgenic mouse models were also compared. Results: Using FVX, single step co-registration of atlas, CT and PET was accomplished in seconds (by one-button pressing) and the TACs for specific ROIs of mouse brain were automatically generated after co-registration. In contrast, it took an average of 15 min to manually draw a single VOI (total 5 hours/mouse for 20 VOIs) directly on CT images using Inveon IRW without an atlas, a process that required an expert in mouse neuroanatomy. Overall, the TACs for the corresponding VOIs derived from IRW and FVX were similar in counts and shapes. Most importantly, this VOI atlas-based method can provide unbiased measures of radioactivity concentration from PET studies. The results from studies of tau vs. Aa transgenic mouse models after injection of Amyvid showed an apparent difference in the tracer uptake and kinetics (Fig. 1). Conclusions: We have demonstrated the feasibility to map mouse brain with an automated atlas-based co-registration for data analysis of microPET brain studies using FVX. This novel time-saving data analysis methodology, unachievable with current microPET imaging systems, will facilitate accurate assessment and spatial localization of brain signals in mouse model studies for a variety of human CNS disorders
EMBASE:613981705
ISSN: 1860-2002
CID: 2415632
The role of the microbiome in kidney stone formation
Mehta, Mansi; Goldfarb, David S; Nazzal, Lama
Nephrolithiasis is a complex disease of worldwide prevalence that is influenced by both genetic and environmental factors. About 75% of kidney stones are predominantly composed of calcium oxalate and urinary oxalate is considered a crucial risk factor. Microorganisms may have a role in the pathogenesis and prevention of kidney stones and the involvement of the intestinal microbiome in this renal disease has been a recent area of interest. Oxalobacter formigenes is a gram negative bacteria that degrades oxalate in the gut decreasing urinary oxalate excretion. In this review, we examine the data studying the role of Oxalobacter formigenes kidney stone disease in humans and animals, the effect of antibiotics on its colonization, and the potential role of probiotics and whole microbial communities as therapeutic interventions.
PMCID:5764756
PMID: 27847292
ISSN: 1743-9159
CID: 2310952
Tau downregulates BDNF expression in animal and cellular models of Alzheimer's disease
Rosa, Elyse; Mahendram, Sujeivan; Ke, Yazi D; Ittner, Lars M; Ginsberg, Stephen D; Fahnestock, Margaret
In Alzheimer's disease, soluble tau accumulates and deposits as neurofibrillary tangles (NFTs). However, a precise toxic mechanism of tau is not well understood. We hypothesized that overexpression of wild-type tau downregulates brain-derived neurotrophic factor (BDNF), a neurotrophic peptide essential for learning and memory. Two transgenic mouse models of human tau expression and human tau (hTau40)-transfected human neuroblastoma (SH-SY5Y) cells were used to examine the effect of excess or pathologically modified wild-type human tau on BDNF expression. Both transgenic mouse models, with or without NFTs, as well as hTau40-SH-SY5Y cells significantly downregulated BDNF messenger RNA compared with controls. Similarly, transgenic mice overexpressing amyloid-beta (Abeta) significantly downregulated BDNF expression. However, when crossed with tau knockout mice, the resulting animals exhibited BDNF levels that were not statistically different from wild-type mice. These results demonstrate that excess or pathologically modified wild-type human tau downregulates BDNF and that neither a mutation in tau nor the presence of NFTs is required for toxicity. Moreover, our findings suggest that tau at least partially mediates Abeta-induced BDNF downregulation. Therefore, Alzheimer's disease treatments targeting Abeta alone may not be effective without considering the impact of tau pathology on neurotrophic pathways.
PMCID:5159317
PMID: 27676333
ISSN: 1558-1497
CID: 2262532
Use of self-gated radial cardiovascular magnetic resonance to detect and classify arrhythmias (atrial fibrillation and premature ventricular contraction)
Piekarski, Eve; Chitiboi, Teodora; Ramb, Rebecca; Feng, Li; Axel, Leon
BACKGROUND: Arrhythmia can significantly alter the image quality of cardiovascular magnetic resonance (CMR); automatic detection and sorting of the most frequent types of arrhythmias during the CMR acquisition could potentially improve image quality. New CMR techniques, such as non-Cartesian CMR, can allow self-gating: from cardiac motion-related signal changes, we can detect cardiac cycles without an electrocardiogram. We can further use this data to obtain a surrogate for RR intervals (valley intervals: VV). Our purpose was to evaluate the feasibility of an automated method for classification of non-arrhythmic (NA) (regular cycles) and arrhythmic patients (A) (irregular cycles), and for sorting of common arrhythmia patterns between atrial fibrillation (AF) and premature ventricular contraction (PVC), using the cardiac motion-related signal obtained during self-gated free-breathing radial cardiac cine CMR with compressed sensing reconstruction (XD-GRASP). METHODS: One hundred eleven patients underwent cardiac XD-GRASP CMR between October 2015 and February 2016; 33 were included for retrospective analysis with the proposed method (6 AF, 8 PVC, 19 NA; by recent ECG). We analyzed the VV, using pooled statistics (histograms) and sequential analysis (Poincare plots), including the median (medVV), the weighted mean (meanVV), the total number of VV values (VVval), and the total range (VVTR) and half range (VVHR) of the cumulative frequency distribution of VV, including the median to half range (medVV/VVHR) and the half range to total range (VVHR/VVTR) ratios. We designed a simple algorithm for using the VV results to differentiate A from NA, and AF from PVC. RESULTS: Between NA and A, meanVV, VVval, VVTR, VVHR, medVV/VVHR and VVHR/VVTR ratios were significantly different (p values = 0.00014, 0.0027, 0.000028, 5x10-9, 0.002, respectively). Between AF and PVC, meanVV, VVval and medVV/VVHR ratio were significantly different (p values = 0.018, 0.007, 0.044, respectively). Using our algorithm, sensitivity, specificity, and accuracy were 93 %, 95 % and 94 % to discriminate between NA and A, and 83 %, 71 %, and 77 % to discriminate between AF and PVC, respectively; areas under the ROC curve were 0.93 and 0.89. CONCLUSIONS: Our study shows we can reliably detect arrhythmias and differentiate AF from PVC, using self-gated cardiac cine XD-GRASP CMR.
PMCID:5123392
PMID: 27884152
ISSN: 1532-429x
CID: 2314522
Cell-Specific Targeting of Genetically Encoded Tools for Neuroscience
Sjulson, Lucas; Cassataro, Daniela; DasGupta, Shamik; Miesenbock, Gero
Genetically encoded tools for visualizing and manipulating neurons in vivo have led to significant advances in neuroscience, in large part because of the ability to target expression to specific cell populations of interest. Current methods enable targeting based on marker gene expression, development, anatomical projection pattern, synaptic connectivity, and recent activity as well as combinations of these factors. Here, we review these methods, focusing on issues of practical implementation as well as areas for future improvement. Expected final online publication date for the Annual Review of Genetics Volume 50 is November 23, 2016. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
PMCID:5630135
PMID: 27732792
ISSN: 1545-2948
CID: 2278402
Deletion of Neurotrophin Signaling through the Glucocorticoid Receptor Pathway Causes Tau Neuropathology
Arango-Lievano, Margarita; Peguet, Camille; Catteau, Matthias; Parmentier, Marie-Laure; Wu, Synphen; Chao, Moses V; Ginsberg, Stephen D; Jeanneteau, Freddy
Glucocorticoid resistance is a risk factor for Alzheimer's disease (AD). Molecular and cellular mechanisms of glucocorticoid resistance in the brain have remained unknown and are potential therapeutic targets. Phosphorylation of glucocorticoid receptors (GR) by brain-derived neurotrophic factor (BDNF) signaling integrates both pathways for remodeling synaptic structure and plasticity. The goal of this study is to test the role of the BDNF-dependent pathway on glucocorticoid signaling in a mouse model of glucocorticoid resistance. We report that deletion of GR phosphorylation at BDNF-responding sites and downstream signaling via the MAPK-phosphatase DUSP1 triggers tau phosphorylation and dendritic spine atrophy in mouse cortex. In human cortex, DUSP1 protein expression correlates with tau phosphorylation, synaptic defects and cognitive decline in subjects diagnosed with AD. These findings provide evidence for a causal role of BDNF-dependent GR signaling in tau neuropathology and indicate that DUSP1 is a potential target for therapeutic interventions.
PMCID:5110980
PMID: 27849045
ISSN: 2045-2322
CID: 2310582