Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Neuroscience Institute

Total Results:

13474


Impact of elosulfase alfa in patients with morquio A syndrome who have limited ambulation: An open-label, phase 2 study

Harmatz, Paul R; Mengel, Eugen; Geberhiwot, Tarekegn; Muschol, Nicole; Hendriksz, Christian J; Burton, Barbara K; Jameson, Elisabeth; Berger, Kenneth I; Jester, Andrea; Treadwell, Marsha; Sisic, Zlatko; Decker, Celeste
Efficacy and safety of elosulfase alfa enzyme replacement therapy (ERT) were assessed in an open-label, phase 2, multi-national study in Morquio A patients aged >/=5 years unable to walk >/=30 meters in the 6-min walk test. Patients received elosulfase alfa 2.0 mg/kg/week intravenously for 48 weeks. Efficacy measures were functional dexterity, pinch/grip strength, mobility in a modified timed 25-foot walk, pain, quality of life, respiratory function, and urine keratan sulfate (KS). Safety/tolerability was also assessed. Fifteen patients received elosulfase alfa, three patients discontinued ERT due to adverse events (two were grade 3 drug-related adverse events, the other was not drug-related), and two patients missed >20% of planned infusions; 10 completed treatment through 48 weeks and received >/=80% of planned infusions (Modified Per Protocol [MPP] population). The study population had more advanced disease than that enrolled in other trials. From baseline to week 48, MPP data showed biochemical efficacy (urine KS decreased 52.4%). The remaining efficacy results were highly variable due to challenges in test execution because of severe skeletal and joint abnormalities, small sample sizes, and clinical heterogeneity among patients. Eight patients showed improvements in one or more outcome measures; several patients indicated improvements not captured by the study assessments (e.g., increased energy, functional ability). The nature of adverse events was similar to other elosulfase alfa studies. This study illustrates the considerable challenges in objectively measuring impact of ERT in very disabled Morquio A patients and highlights the need to examine results on an individual basis. (c) 2016 The Authors. American Journal of Medical Genetics Part A Published by Wiley Periodicals, Inc.
PMCID:5298029
PMID: 27774754
ISSN: 1552-4833
CID: 2758632

The Roles of the Olivocerebellar Pathway in Motor Learning and Motor Control. A Consensus Paper

Lang, Eric J; Apps, Richard; Bengtsson, Fredrik; Cerminara, Nadia L; De Zeeuw, Chris I; Ebner, Timothy J; Heck, Detlef H; Jaeger, Dieter; Jorntell, Henrik; Kawato, Mitsuo; Otis, Thomas S; Ozyildirim, Ozgecan; Popa, Laurentiu S; Reeves, Alexander M B; Schweighofer, Nicolas; Sugihara, Izumi; Xiao, Jianqiang
For many decades, the predominant view in the cerebellar field has been that the olivocerebellar system's primary function is to induce plasticity in the cerebellar cortex, specifically, at the parallel fiber-Purkinje cell synapse. However, it has also long been proposed that the olivocerebellar system participates directly in motor control by helping to shape ongoing motor commands being issued by the cerebellum. Evidence consistent with both hypotheses exists; however, they are often investigated as mutually exclusive alternatives. In contrast, here, we take the perspective that the olivocerebellar system can contribute to both the motor learning and motor control functions of the cerebellum and might also play a role in development. We then consider the potential problems and benefits of it having multiple functions. Moreover, we discuss how its distinctive characteristics (e.g., low firing rates, synchronization, and variable complex spike waveforms) make it more or less suitable for one or the other of these functions, and why having multiple functions makes sense from an evolutionary perspective. We did not attempt to reach a consensus on the specific role(s) the olivocerebellar system plays in different types of movements, as that will ultimately be determined experimentally; however, collectively, the various contributions highlight the flexibility of the olivocerebellar system, and thereby suggest that it has the potential to act in both the motor learning and motor control functions of the cerebellum.
PMCID:5116294
PMID: 27193702
ISSN: 1473-4230
CID: 2112242

Dependence on b-value of the direction-averaged diffusion-weighted imaging signal in brain

McKinnon, Emilie T; Jensen, Jens H; Glenn, G Russell; Helpern, Joseph A
PURPOSE:The dependence of the direction-averaged diffusion-weighted imaging (DWI) signal in brain was studied as a function of b-value in order to help elucidate the relationship between diffusion weighting and brain microstructure. METHODS:. RESULTS:For all regions of interest, a simple power law relationship accurately described the observed dependence of the direction-averaged signal as a function of the diffusion weighting. In white matter, the characteristic exponent was 0.56±0.05, while in gray matter it was 0.88±0.11. Comparable results were found with the HCP data. CONCLUSION:. The exponents characterizing this power law behavior were markedly different for white and gray matter, indicative of sharply contrasting microstructural environments. These results may inform the construction of microstructural models used to interpret the DWI signal.
PMCID:5328631
PMID: 27989904
ISSN: 1873-5894
CID: 3150102

Ex vivo nonviral gene delivery of mu-opioid receptor to attenuate cancer-induced pain

Yamano, Seiichi; Viet, Chi T; Dang, Dongmin; Dai, Jisen; Hanatani, Shigeru; Takayama, Tadahiro; Kasai, Hironori; Imamura, Kentaro; Campbell, Ron; Ye, Yi; Dolan, John C; Kwon, William Myung; Schneider, Stefan D; Schmidt, Brian L
Virus-mediated gene delivery shows promise for the treatment of chronic pain. However, viral vectors have cytotoxicity. To avoid toxicities and limitations of virus-mediated gene delivery, we developed a novel nonviral hybrid vector: HIV-1 Tat peptide sequence modified with histidine and cysteine residues combined with a cationic lipid. The vector has high transfection efficiency with little cytotoxicity in cancer cell lines including HSC-3 (human tongue squamous cell carcinoma) and exhibits differential expression in HSC-3 ( approximately 45-fold) relative to HGF-1 (human gingival fibroblasts) cells. We used the nonviral vector to transfect cancer with OPRM1, the mu-opioid receptor gene, as a novel method for treating cancer-induced pain. After HSC-3 cells were transfected with OPRM1, a cancer mouse model was created by inoculating the transfected HSC-3 cells into the hind paw or tongue of athymic mice to determine the analgesic potential of OPRM1 transfection. Mice with HSC-3 tumors expressing OPRM1 demonstrated significant antinociception compared with control mice. The effect was reversible with local naloxone administration. We quantified beta-endorphin secretion from HSC-3 cells and showed that HSC-3 cells transfected with OPRM1 secreted significantly more beta-endorphin than control HSC-3 cells. These findings indicate that nonviral delivery of the OPRM1 gene targeted to the cancer microenvironment has an analgesic effect in a preclinical cancer model, and nonviral gene delivery is a potential treatment for cancer pain.
PMCID:5584564
PMID: 28092646
ISSN: 1872-6623
CID: 2412132

Dexmedetomidine for refractory adrenergic crisis in familial dysautonomia

Dillon, Ryan C; Palma, Jose-Alberto; Spalink, Christy L; Altshuler, Diana; Norcliffe-Kaufmann, Lucy; Fridman, David; Papadopoulos, John; Kaufmann, Horacio
OBJECTIVE: Adrenergic crises are a cardinal feature of familial dysautonomia (FD). Traditionally, adrenergic crises have been treated with the sympatholytic agent clonidine or with benzodiazepines, which can cause excessive sedation and respiratory depression. Dexmedetomidine is a centrally-acting alpha 2-adrenergic agonist with greater selectivity and shorter half-life than clonidine. We evaluated the preliminary effectiveness and safety of intravenous dexmedetomidine in the treatment of refractory adrenergic crisis in patients with FD. METHODS: Retrospective chart review of patients with genetically confirmed FD who received intravenous dexmedetomidine for refractory adrenergic crises. The primary outcome was preliminary effectiveness of dexmedetomidine defined as change in blood pressure (BP) and heart rate (HR) 1 h after the initiation of dexmedetomidine. Secondary outcomes included incidence of adverse events related to dexmedetomidine, hospital and intensive care unit (ICU) length of stay, and hemodynamic parameters 12 h after dexmedetomidine cessation. RESULTS: Nine patients over 14 admissions were included in the final analysis. At 1 h after the initiation of dexmedetomidine, systolic BP decreased from 160 +/- 7 to 122 +/- 7 mmHg (p = 0.0005), diastolic BP decreased from 103 +/- 6 to 65 +/- 8 (p = 0.0003), and HR decreased from 112 +/- 4 to 100 +/- 5 bpm (p = 0.0047). The median total adverse events during dexmedetomidine infusion was 1 per admission. Median hospital length of stay was 9 days [interquartile range (IQR) 3-11 days] and median ICU length of stay was 7 days (IQR 3-11 days). CONCLUSIONS: Intravenous dexmedetomidine is safe in patients with FD and appears to be effective to treat refractory adrenergic crisis. Dexmedetomidine may be considered in FD patients who do not respond to conventional clonidine and benzodiazepine pharmacotherapy.
PMCID:5292083
PMID: 27752785
ISSN: 1619-1560
CID: 2279892

Master or servant? emerging roles for motor neuron subtypes in the construction and evolution of locomotor circuits

Dasen, Jeremy S
Execution of motor behaviors relies on the ability of circuits within the nervous system to engage functionally relevant subtypes of spinal motor neurons. While much attention has been given to the role of networks of spinal interneurons on setting the rhythm and pattern of output from locomotor circuits, recent studies suggest that motor neurons themselves can exert an instructive role in shaping the wiring and functional properties of locomotor networks. Alteration in the distribution of motor neuron subtypes also appears to have contributed to evolutionary transitions in the locomotor strategies used by land vertebrates. This review describes emerging evidence that motor neuron-derived cues can have a profound influence on the organization, wiring, and evolutionary diversification of locomotor circuits.
PMCID:5316365
PMID: 27907815
ISSN: 1873-6882
CID: 2329422

Timing temporal transitions during brain development

Rossi, Anthony M; Fernandes, Vilaiwan M; Desplan, Claude
During development a limited number of progenitors generate diverse cell types that comprise the nervous system. Neuronal diversity, which arises largely at the level of neural stem cells, is critical for brain function. Often these cells exhibit temporal patterning: they sequentially produce neurons of distinct cell fates as a consequence of intrinsic and/or extrinsic cues. Here, we review recent advances in temporal patterning during neuronal specification, focusing on conserved players and mechanisms in invertebrate and vertebrate models. These studies underscore temporal patterning as an evolutionarily conserved strategy to generate neuronal diversity. Understanding the general principles governing temporal patterning and the molecular players involved will improve our ability to direct neural progenitors towards specific neuronal fates for brain repair.
PMCID:5316342
PMID: 27984764
ISSN: 1873-6882
CID: 2744792

Neurobehavioral Assessment of Maternal Odor in Developing Rat Pups: Implications for Social Buffering

Al Ain, Syrina; Perry, Rosemarie E; Nunez, Bestina; Kayser, Kassandra; Hochman, Chase; Brehman, Elizabeth; LaComb, Miranda; Wilson, Donald A; Sullivan, Regina M
Social support can attenuate the behavioral and stress hormone response to threat, a phenomenon called social buffering. The mother's social buffering of the infant is one of the more robust examples, yet we understand little about the neurobiology. Using a rodent model, we explore the neurobiology of social buffering by assessing neural processing of the maternal odor, a major cue controlling social buffering in rat pups. We used pups before (Postnatal day (PN) 7) and after (PN14, PN23) the functional emergence of social buffering. Pups were injected with 14C 2-DG and presented with the maternal odor, a control preferred odor incapable of social buffering (acetophenone), or no odor. Brains were removed, processed for autoradiography and brain areas identified as important in adult social buffering were assessed, including the amygdala basolateral complex (BLA), medial prefrontal cortex (mPFC) and anterior cingulate cortex (ACC). Results suggest dramatic changes in the processing of maternal odor. PN7 pups show mPFC and ACC activation, although PN14 pups showed no activation of the mPFC, ACC or BLA. All brain areas assessed were recruited by PN23. Additional analysis suggests substantial changes in functional connectivity across development. Together, these results imply complex nonlinear transitions in the neurobiology of social buffering in early life that may provide insight into the changing role of the mother in supporting social buffering.
PMCID:5033694
PMID: 26934130
ISSN: 1747-0927
CID: 2009342

Contribution of formant frequency information to vowel perception in steady-state noise by cochlear implant users

Sagi, Elad; Svirsky, Mario A
Cochlear implant (CI) recipients have difficulty understanding speech in noise even at moderate signal-to-noise ratios. Knowing the mechanisms they use to understand speech in noise may facilitate the search for better speech processing algorithms. In the present study, a computational model is used to assess whether CI users' vowel identification in noise can be explained by formant frequency cues (F1 and F2). Vowel identification was tested with 12 unilateral CI users in quiet and in noise. Formant cues were measured from vowels in each condition, specific to each subject's speech processor. Noise distorted the location of vowels in the F2 vs F1 plane in comparison to quiet. The best fit model to subjects' data in quiet produced model predictions in noise that were within 8% of actual scores on average. Predictions in noise were much better when assuming that subjects used a priori knowledge regarding how formant information is degraded in noise (experiment 1). However, the model's best fit to subjects' confusion matrices in noise was worse than in quiet, suggesting that CI users utilize formant cues to identify vowels in noise, but to a different extent than how they identify vowels in quiet (experiment 2).
PMCID:5392095
PMID: 28253672
ISSN: 1520-8524
CID: 2471552

Immune Escape via a Transient Gene Expression Program Enables Productive Replication of a Latent Pathogen

Linderman, Jessica A; Kobayashi, Mariko; Rayannavar, Vinayak; Fak, John J; Darnell, Robert B; Chao, Moses V; Wilson, Angus C; Mohr, Ian
How type I and II interferons prevent periodic reemergence of latent pathogens in tissues of diverse cell types remains unknown. Using homogeneous neuron cultures latently infected with herpes simplex virus 1, we show that extrinsic type I or II interferon acts directly on neurons to induce unique gene expression signatures and inhibit the reactivation-specific burst of viral genome-wide transcription called phase I. Surprisingly, interferons suppressed reactivation only during a limited period early in phase I preceding productive virus growth. Sensitivity to type II interferon was selectively lost if viral ICP0, which normally accumulates later in phase I, was expressed before reactivation. Thus, interferons suppress reactivation by preventing initial expression of latent genomes but are ineffective once phase I viral proteins accumulate, limiting interferon action. This demonstrates that inducible reactivation from latency is only transiently sensitive to interferon. Moreover, it illustrates how latent pathogens escape host immune control to periodically replicate by rapidly deploying an interferon-resistant state.
PMCID:5340258
PMID: 28147283
ISSN: 2211-1247
CID: 2424422