Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14178


Targeted mRNA Decay by RNA Binding Protein AUF1 Regulates Adult Muscle Stem Cell Fate, Promoting Skeletal Muscle Integrity

Chenette, Devon M; Cadwallader, Adam B; Antwine, Tiffany L; Larkin, Lauren C; Wang, Jinhua; Olwin, Bradley B; Schneider, Robert J
Following skeletal muscle injury, muscle stem cells (satellite cells) are activated, proliferate, and differentiate to form myofibers. We show that mRNA-decay protein AUF1 regulates satellite cell function through targeted degradation of specific mRNAs containing 3' AU-rich elements (AREs). auf1-/- mice undergo accelerated skeletal muscle wasting with age and impaired skeletal muscle repair following injury. Satellite cell mRNA analysis and regeneration studies demonstrate that auf1-/- satellite cell self-renewal is impaired due to increased stability and overexpression of ARE-mRNAs, including cell-autonomous overexpression of matrix metalloprotease MMP9. Secreted MMP9 degrades the skeletal muscle matrix, preventing satellite-cell-mediated regeneration and return to quiescence. Blocking MMP9 activity in auf1-/- mice restores skeletal muscle repair and maintenance of the satellite cell population. Control of ARE-mRNA decay by AUF1 represents a mechanism for adult stem cell regulation and is implicated in human skeletal muscle wasting diseases.
PMCID:5323095
PMID: 27452471
ISSN: 2211-1247
CID: 2191382

Comparative pathobiology of beta-amyloid and the unique susceptibility of humans to Alzheimer's disease

Rosen, Rebecca F; Tomidokoro, Yasushi; Farberg, Aaron S; Dooyema, Jeromy; Ciliax, Brian; Preuss, Todd M; Neubert, Thomas A; Ghiso, Jorge A; LeVine, Harry 3rd; Walker, Lary C
The misfolding and accumulation of the protein fragment beta-amyloid (Abeta) is an early and essential event in the pathogenesis of Alzheimer's disease (AD). Despite close biological similarities among primates, humans appear to be uniquely susceptible to the profound neurodegeneration and dementia that characterize AD, even though nonhuman primates deposit copious Abeta in senile plaques and cerebral amyloid-beta angiopathy as they grow old. Because the amino acid sequence of Abeta is identical in all primates studied to date, we asked whether differences in the properties of aggregated Abeta might underlie the vulnerability of humans and the resistance of other primates to AD. In a comparison of aged squirrel monkeys (Saimiri sciureus) and humans with AD, immunochemical and mass spectrometric analyses indicate that the populations of Abeta fragments are largely similar in the 2 species. In addition, Abeta-rich brain extracts from the brains of aged squirrel monkeys and AD patients similarly seed the deposition of Abeta in a transgenic mouse model. However, the epitope exposure of aggregated Abeta differs in sodium dodecyl sulfate-stable oligomeric Abeta from the 2 species. In addition, the high-affinity binding of 3H Pittsburgh Compound B to Abeta is significantly diminished in tissue extracts from squirrel monkeys compared with AD patients. These findings support the hypothesis that differences in the pathobiology of aggregated Abeta among primates are linked to post-translational attributes of the misfolded protein, such as molecular conformation and/or the involvement of species-specific cofactors.
PMCID:4913040
PMID: 27318146
ISSN: 1558-1497
CID: 2145402

Protecting Nipple Perfusion by Devascularization and Surgical Delay in Patients at Risk for Ischemic Complications During Nipple-Sparing Mastectomies

Bertoni, Danielle M; Nguyen, Dung; Rochlin, Danielle; Hernandez-Boussard, Tina; Meyer, Shannon; Choy, Nicole; Gurtner, Geoffrey C; Wapnir, Irene L
BACKGROUND:Indications for nipple-sparing mastectomy (NSM) are expanding; however, high-risk patients have more ischemic complications. Surgical devascularization of the nipple-areolar complex (NAC) prior to NSM can reduce complications. This study reports perfusion patterns and complications in high-risk patients undergoing 2-stage NSM. METHODS:Surgical devascularization of the NAC was performed 3-6 weeks prior to NSM in 28 women. Risk factors included ptosis, obesity, smoking, prior breast surgery, and radiation. Using indocyanine green (ICG)-based fluorescence and an infrared camera, blood inflow was visualized intraoperatively. NAC perfusion patterns were classified as: V1, underlying breast; V2, surrounding skin; V3 = V1 + V2, or V4, capillary fill following devascularization. Ischemic complications were analyzed. RESULTS:Baseline perfusion for 54 breasts was 35 % V1, 32 % V2, and 33 % V3. Increasing ptosis was associated with V1 pattern: 86 % for grade 3, 31 % for grade 2, and 18 % for grade 1. Postdevascularization epidermolysis was observed in 63 % of V1 baseline, 41 % of V2, and 22 % of V3 (P = .042) and after NSM in 26 % for V1, 7 % for V2, and 6 % for V3 (P = .131). Ptosis was significantly associated with epidermolysis postdevascularization (P = .002) and NSM (P = .002). Smoking and BMI ≥30 were related to increased ischemic complications. Two or more risk factors were associated with postdevascularization ischemic changes (P = .026), but were not significant after NSM. Nipple loss was not observed, but 2 patients underwent partial areolar resection. CONCLUSION/CONCLUSIONS:Adaptive circulatory changes after devascularization allow tissues to tolerate the additional ischemic challenge of mastectomy. Our findings support extending 2-staged operations to high-risk women previously considered unsuitable for NSM.
PMID: 27038458
ISSN: 1534-4681
CID: 3110052

In Vivo PET Imaging of HDL in Multiple Atherosclerosis Models

Perez-Medina, Carlos; Binderup, Tina; Lobatto, Mark E; Tang, Jun; Calcagno, Claudia; Giesen, Luuk; Wessel, Chang Ho; Witjes, Julia; Ishino, Seigo; Baxter, Samantha; Zhao, Yiming; Ramachandran, Sarayu; Eldib, Mootaz; Sanchez-Gaytan, Brenda L; Robson, Philip M; Bini, Jason; Granada, Juan F; Fish, Kenneth M; Stroes, Erik S G; Duivenvoorden, Raphael; Tsimikas, Sotirios; Lewis, Jason S; Reiner, Thomas; Fuster, Valentin; Kjaer, Andreas; Fisher, Edward A; Fayad, Zahi A; Mulder, Willem J M
OBJECTIVES: The goal of this study was to develop and validate a noninvasive imaging tool to visualize the in vivo behavior of high-density lipoprotein (HDL) by using positron emission tomography (PET), with an emphasis on its plaque-targeting abilities. BACKGROUND: HDL is a natural nanoparticle that interacts with atherosclerotic plaque macrophages to facilitate reverse cholesterol transport. HDL-cholesterol concentration in blood is inversely associated with risk of coronary heart disease and remains one of the strongest independent predictors of incident cardiovascular events. METHODS: Discoidal HDL nanoparticles were prepared by reconstitution of its components apolipoprotein A-I (apo A-I) and the phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine. For radiolabeling with zirconium-89 (89Zr), the chelator deferoxamine B was introduced by conjugation to apo A-I or as a phospholipid-chelator (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-deferoxamine B). Biodistribution and plaque targeting of radiolabeled HDL were studied in established murine, rabbit, and porcine atherosclerosis models by using PET combined with computed tomography (PET/CT) imaging or PET combined with magnetic resonance imaging. Ex vivo validation was conducted by radioactivity counting, autoradiography, and near-infrared fluorescence imaging. Flow cytometric assessment of cellular specificity in different tissues was performed in the murine model. RESULTS: We observed distinct pharmacokinetic profiles for the two 89Zr-HDL nanoparticles. Both apo A-I- and phospholipid-labeled HDL mainly accumulated in the kidneys, liver, and spleen, with some marked quantitative differences in radioactivity uptake values. Radioactivity concentrations in rabbit atherosclerotic aortas were 3- to 4-fold higher than in control animals at 5 days' post-injection for both 89Zr-HDL nanoparticles. In the porcine model, increased accumulation of radioactivity was observed in lesions by using in vivo PET imaging. Irrespective of the radiolabel's location, HDL nanoparticles were able to preferentially target plaque macrophages and monocytes. CONCLUSIONS: 89Zr labeling of HDL allows study of its in vivo behavior by using noninvasive PET imaging, including visualization of its accumulation in advanced atherosclerotic lesions. The different labeling strategies provide insight on the pharmacokinetics and biodistribution of HDL's main components (i.e., phospholipids, apo A-I).
PMCID:5589956
PMID: 27236528
ISSN: 1876-7591
CID: 2125012

Loss of protein association causes cardiolipin degradation in Barth syndrome

Xu, Yang; Phoon, Colin K L; Berno, Bob; D'Souza, Kenneth; Hoedt, Esthelle; Zhang, Guoan; Neubert, Thomas A; Epand, Richard M; Ren, Mindong; Schlame, Michael
Cardiolipin is a specific mitochondrial phospholipid that has a high affinity for proteins and that stabilizes the assembly of supercomplexes involved in oxidative phosphorylation. We found that sequestration of cardiolipin in protein complexes is critical to protect it from degradation. The turnover of cardiolipin is slower by almost an order of magnitude than the turnover of other phospholipids. However, in subjects with Barth syndrome, cardiolipin is rapidly degraded via the intermediate monolyso-cardiolipin. Treatments that induce supercomplex assembly decrease the turnover of cardiolipin and the concentration of monolyso-cardiolipin, whereas dissociation of supercomplexes has the opposite effect. Our data suggest that cardiolipin is uniquely protected from normal lipid turnover by its association with proteins, but this association is compromised in subjects with Barth syndrome, leading cardiolipin to become unstable, which in turn causes the accumulation of monolyso-cardiolipin.
PMCID:4955704
PMID: 27348092
ISSN: 1552-4469
CID: 2166952

Age-associated vascular inflammation promotes monocytosis during atherogenesis

Du, Wei; Wong, Christine; Song, Yang; Shen, Hua; Mori, Daniel; Rotllan, Noemi; Price, Nathan; Dobrian, Anca D; Meng, Hailong; Kleinstein, Steven H; Fernandez-Hernando, Carlos; Goldstein, Daniel R
Aging leads to a proinflammatory state within the vasculature without disease, yet whether this inflammatory state occurs during atherogenesis remains unclear. Here, we examined how aging impacts atherosclerosis using Ldlr(-/-) mice, an established murine model of atherosclerosis. We found that aged atherosclerotic Ldlr(-/-) mice exhibited enhanced atherogenesis within the aorta. Aging also led to increased LDL levels, elevated blood pressure on a low-fat diet, and insulin resistance after a high-fat diet (HFD). On a HFD, aging increased a monocytosis in the peripheral blood and enhanced macrophage accumulation within the aorta. When we conducted bone marrow transplant experiments, we found that stromal factors contributed to age-enhanced atherosclerosis. To delineate these stromal factors, we determined that the vasculature exhibited an age-enhanced inflammatory response consisting of elevated production of CCL-2, osteopontin, and IL-6 during atherogenesis. In addition, in vitro cultures showed that aging enhanced the production of osteopontin by vascular smooth muscle cells. Functionally, aged atherosclerotic aortas displayed higher monocyte chemotaxis than young aortas. Hence, our study has revealed that aging induces metabolic dysfunction and enhances vascular inflammation to promote a peripheral monocytosis and macrophage accumulation within the atherosclerotic aorta.
PMCID:4933655
PMID: 27135421
ISSN: 1474-9726
CID: 3102792

Correction: Curly Encodes Dual Oxidase, Which Acts with Heme Peroxidase Curly Su to Shape the Adult Drosophila Wing [Correction]

Hurd, Thomas Ryan; Liang, Feng-Xia; Lehmann, Ruth
[This corrects the article DOI: 10.1371/journal.pgen.1005625.].
PMCID:5001646
PMID: 27564704
ISSN: 1553-7404
CID: 3098522

Immunoprotective responses of Th1 stimulatory protein- S-Adenosyl-L-Homocysteine Hydrolase against Experimental visceral Leishmaniasis

Khare, Prashant; Jaiswal, Anil K; Tripathi, Chandra Dev Pati; Sundar, Shyam; Dube, Anuradha
In visceral leishmaniasis (VL), it is well-known that a patient in clinical remission of VL remains immune to reinfection, which provides a rationale for the feasibility of a vaccine against this deadly disease. In earlier studies, observation of significant cellular responses in treated Leishmania patients as well as in hamsters against leishmanial antigens from different fractions led to its further proteomic characterization, wherein S-Adenosyl-L-Homocysteine Hydrolase (AdoHcy) was identified as Th1 stimulatory protein. The present study includes immunological characterization of this protein, its cellular responses (lymphoproliferation, NO production and cytokine responses) in treated Leishmania infected hamsters and patients as well as prophylactic efficacy against Leishmania challenge in hamsters and the immune responses generated thereof. Significantly higher cellular responses were noticed against recombinant L. donovani S-Adenosyl-L-Homocysteine Hydrolase (rLdAdoHcy) as compared to soluble L. donovani antigen in treated samples. Moreover, stimulation of peripheral blood mononuclear cells with rLdAdoHcy up-regulated the levels of IFN-gamma, IL-12 and down-regulated IL-10. Furthermore, vaccination with rLdAdoHcy generated perceptible delayed type hypersensitivity response and exerted considerably good prophylactic efficacy ( approximately 70% inhibition) against L. donovani challenge. The efficacy was confirmed by the increased expression levels of inducible NO synthase and Th1-type cytokines, IFN-gamma and IL-12 and down-regulation of IL-4, IL-10 and TGF-beta. The results indicate towards the potentiality of rLdAdoHcy protein as a suitable vaccine candidate against VL
PMCID:4954996
PMID: 26898994
ISSN: 1365-2249
CID: 2045632

A new method for vitrifying samples for cryoEM

Razinkov, Ivan; Dandey, Venkat; Wei, Hui; Zhang, Zhening; Melnekoff, David; Rice, William J; Wigge, Christoph; Potter, Clinton S; Carragher, Bridget
Almost every aspect of cryo electron microscopy (cryoEM) has been automated over the last few decades. One of the challenges that remains to be addressed is the robust and reliable preparation of vitrified specimens of suitable ice thickness. We present results from a new device for preparing vitrified samples. The successful use of the device is coupled to a new "self-blotting" grid that we have developed to provide a method for spreading a sample to a thin film without the use of externally applied filter paper. This new approach has the advantage of using small amounts of protein material, resulting in large areas of ice of a well defined thickness containing evenly distributed single particles. We believe that these methods will in the future result in a system for vitrifying grids that is completely automated.
PMCID:5464370
PMID: 27288865
ISSN: 1095-8657
CID: 3800082

Deducing the Symmetry of Helical Assemblies: Applications to Membrane Proteins

Coudray, Nicolas; Lasala, Ralph; Zhang, Zhening; Clark, Kathy M; Dumont, Mark E; Stokes, David L
Helical reconstruction represents a convenient and powerful approach for structure determination of macromolecules that assemble into helical arrays. In the case of membrane proteins, formation of tubular crystals with helical symmetry represents an attractive alternative, especially when their small size precludes the use of single-particle analysis. An essential first step for helical reconstruction is to characterize the helical symmetry. This process is often daunting, due to the complexity of helical diffraction and to the low signal-to-noise ratio in images of individual assemblies. Furthermore, the large diameters of the tubular crystals produced by membrane proteins exacerbates the innate ambiguities that, if not resolved, will produce incorrect structures. In this report, we describe a set of tools that can be used to eliminate ambiguities and to validate the choice of symmetry. The first approach increases the signal-to-noise ratio along layer lines by incoherently summing data from multiple helical assemblies, thus producing several candidate indexing schemes. The second approach compares the layer lines from images with those from synthetic models built with the various candidate schemes. The third approach uses unit cell dimensions measured from collapsed tubes to distinguish between these candidate schemes. These approaches are illustrated with tubular crystals from a boron transporter from yeast, Bor1p, and a beta-barrel channel from the outer membrane of E. coli, OmpF.
PMCID:4944209
PMID: 27255388
ISSN: 1095-8657
CID: 2125192