Searched for: school:SOM
Department/Unit:Neuroscience Institute
Neurotoxic reactive astrocytes are induced by activated microglia
Liddelow, Shane A; Guttenplan, Kevin A; Clarke, Laura E; Bennett, Frederick C; Bohlen, Christopher J; Schirmer, Lucas; Bennett, Mariko L; Munch, Alexandra E; Chung, Won-Suk; Peterson, Todd C; Wilton, Daniel K; Frouin, Arnaud; Napier, Brooke A; Panicker, Nikhil; Kumar, Manoj; Buckwalter, Marion S; Rowitch, David H; Dawson, Valina L; Dawson, Ted M; Stevens, Beth; Barres, Ben A
Reactive astrocytes are strongly induced by central nervous system (CNS) injury and disease, but their role is poorly understood. Here we show that a subtype of reactive astrocytes, which we termed A1, is induced by classically activated neuroinflammatory microglia. We show that activated microglia induce A1 astrocytes by secreting Il-1alpha, TNF and C1q, and that these cytokines together are necessary and sufficient to induce A1 astrocytes. A1 astrocytes lose the ability to promote neuronal survival, outgrowth, synaptogenesis and phagocytosis, and induce the death of neurons and oligodendrocytes. Death of axotomized CNS neurons in vivo is prevented when the formation of A1 astrocytes is blocked. Finally, we show that A1 astrocytes are abundant in various human neurodegenerative diseases including Alzheimer's, Huntington's and Parkinson's disease, amyotrophic lateral sclerosis and multiple sclerosis. Taken together these findings help to explain why CNS neurons die after axotomy, strongly suggest that A1 astrocytes contribute to the death of neurons and oligodendrocytes in neurodegenerative disorders, and provide opportunities for the development of new treatments for these diseases.
PMCID:5404890
PMID: 28099414
ISSN: 1476-4687
CID: 2743332
Unravelling Photochemical Relationships Among Natural Products from Aplysia dactylomela
Matsuura, Bryan S; Kolle, Patrick; Trauner, Dirk; de Vivie-Riedle, Regina; Meier, Robin
Aplydactone (1) is a brominated ladderane sesquiterpenoid that was isolated from the sea hare Aplysia dactylomela together with the chamigranes dactylone (2) and 10-epi-dactylone (3). Given the habitat of A. dactylomela, it seems likely that 1 is formed from 2 through a photochemical [2 + 2] cycloaddition. Here, we disclose a concise synthesis of 1, 2, and 3 that was guided by excited state theory and relied on several highly stereoselective transformations. Our experiments and calculations confirm the photochemical origin of 1 and explain why it is formed as the sole isomer. Irradiation of 3 with long wavelength UV light resulted in a [2 + 2] cycloaddition that proceeded with opposite regioselectivity. On the basis of this finding, it seems likely that the resulting regioisomer, termed "8-epi-isoaplydactone", could also be found in A. dactylomela.
PMCID:5269658
PMID: 28149951
ISSN: 2374-7943
CID: 2484132
Locus coeruleus cellular and molecular pathology during the progression of Alzheimer's disease
Kelly, Sarah C; He, Bin; Perez, Sylvia E; Ginsberg, Stephen D; Mufson, Elliott J; Counts, Scott E
A major feature of Alzheimer's disease (AD) is the loss of noradrenergic locus coeruleus (LC) projection neurons that mediate attention, memory, and arousal. However, the extent to which the LC projection system degenerates during the initial stages of AD is still under investigation. To address this question, we performed tyrosine hydroxylase (TH) immunohistochemistry and unbiased stereology of noradrenergic LC neurons in tissue harvested postmortem from subjects who died with a clinical diagnosis of no cognitive impairment (NCI), amnestic mild cognitive impairment (aMCI, a putative prodromal AD stage), or mild/moderate AD. Stereologic estimates of total LC neuron number revealed a 30% loss during the transition from NCI to aMCI, with an additional 25% loss of LC neurons in AD. Decreases in noradrenergic LC neuron number were significantly associated with worsening antemortem global cognitive function as well as poorer performance on neuropsychological tests of episodic memory, semantic memory, working memory, perceptual speed, and visuospatial ability. Reduced LC neuron numbers were also associated with increased postmortem neuropathology. To examine the cellular and molecular pathogenic processes underlying LC neurodegeneration in aMCI, we performed single population microarray analysis. These studies revealed significant reductions in select functional classes of mRNAs regulating mitochondrial respiration, redox homeostasis, and neuritic structural plasticity in neurons accessed from both aMCI and AD subjects compared to NCI. Specific gene expression levels within these functional classes were also associated with global cognitive deterioration and neuropathological burden. Taken together, these observations suggest that noradrenergic LC cellular and molecular pathology is a prominent feature of prodromal disease that contributes to cognitive dysfunction. Moreover, they lend support to a rational basis for targeting LC neuroprotection as a disease modifying strategy.
PMCID:5251221
PMID: 28109312
ISSN: 2051-5960
CID: 2418182
Integration of temporal and spatial patterning generates neural diversity
Erclik, Ted; Li, Xin; Courgeon, Maximilien; Bertet, Claire; Chen, Zhenqing; Baumert, Ryan; Ng, June; Koo, Clara; Arain, Urfa; Behnia, Rudy; del Valle Rodriguez, Alberto; Senderowicz, Lionel; Negre, Nicolas; White, Kevin P; Desplan, Claude
In the Drosophila optic lobes, 800 retinotopically organized columns in the medulla act as functional units for processing visual information. The medulla contains over 80 types of neuron, which belong to two classes: uni-columnar neurons have a stoichiometry of one per column, while multi-columnar neurons contact multiple columns. Here we show that combinatorial inputs from temporal and spatial axes generate this neuronal diversity: all neuroblasts switch fates over time to produce different neurons; the neuroepithelium that generates neuroblasts is also subdivided into six compartments by the expression of specific factors. Uni-columnar neurons are produced in all spatial compartments independently of spatial input; they innervate the neuropil where they are generated. Multi-columnar neurons are generated in smaller numbers in restricted compartments and require spatial input; the majority of their cell bodies subsequently move to cover the entire medulla. The selective integration of spatial inputs by a fixed temporal neuroblast cascade thus acts as a powerful mechanism for generating neural diversity, regulating stoichiometry and the formation of retinotopy.
PMCID:5489111
PMID: 28077877
ISSN: 1476-4687
CID: 2744782
Aberrant development of intrinsic brain activity in a rat model of caregiver maltreatment of offspring
Yan, C-G; Rincon-Cortes, M; Raineki, C; Sarro, E; Colcombe, S; Guilfoyle, D N; Yang, Z; Gerum, S; Biswal, B B; Milham, M P; Sullivan, R M; Castellanos, F X
Caregiver maltreatment induces vulnerability to later-life psychopathology. Clinical and preclinical evidence suggest changes in prefrontal and limbic circuitry underlie this susceptibility. We examined this question using a rat model of maternal maltreatment and methods translated from humans, resting-state functional magnetic resonance imaging (R-fMRI). Rat pups were reared by mothers provided with insufficient or abundant bedding for nest building from postnatal (PN) days 8 to 12 and underwent behavioral assessments of affect-related behaviors (forced swim, sucrose preference and social interaction) in adolescence (PN45) and early adulthood (PN60). R-fMRI sessions were conducted under light anesthesia at both ages. Offspring reared with insufficient bedding (that is, maltreated) displayed enduring negative affective behaviors. Amygdala-prefrontal cortex (PFC) functional connectivity increased significantly from adolescence to adulthood in controls, but not in maltreated animals. We computed the fractional amplitude of low-frequency fluctuations (fALFF), an index of intrinsic brain activity, and found that fALFF in medial prefrontal cortex and anterior cingulate cortex (MPFC/ACC) increased significantly with age in controls but remained unchanged in maltreated animals during adolescence and adulthood. We used a seed-based analysis to explore changes in functional connectivity between this region and the whole brain. Compared with controls, maltreated animals demonstrated reduced functional connectivity between MPFC/ACC and left caudate/putamen across both ages. Functional connectivity between MPFC/ACC and right caudate/putamen showed a group by age interaction: decreased in controls but increased in maltreated animals. These data suggest that maltreatment induces vulnerability to psychopathology and is associated with differential developmental trajectories of prefrontal and subcortical circuits underlying affect regulation.
PMCID:5545736
PMID: 28094810
ISSN: 2158-3188
CID: 2412952
A Conia-Ene-Type Cyclization under Basic Conditions Enables an Efficient Synthesis of (-)-Lycoposerramine R
Hartrampf, Felix W W; Furukawa, Takayuki; Trauner, Dirk
An enantioselective total synthesis of the Lycopodium alkaloid lycoposerramine R is presented. It relies on a base-mediated cyclization that resembles the Conia-ene reaction of ynones and gold-catalyzed variants thereof. Thus, hydrindanones and other functionalized ring systems bearing an exocyclic alkene can be rapidly accessed at room temperature without noble metal catalysis or substrate preactivation.
PMID: 28000374
ISSN: 1521-3773
CID: 2484142
Enantioselective Synthesis and Racemization of (-)-Sinoracutine
Volpin, Giulio; Veprek, Nynke A; Bellan, Andreas B; Trauner, Dirk
Sinoracutine is a recently isolated alkaloid with unusual stereochemical and biological properties. It features an unprecedented tetracyclic 6/6/5/5 skeleton that bears an N-methylpyrrolidine ring fused to a cyclopentenone. Interestingly, both enantiomers of sinoracutine have been independently isolated from the same plant, yet the molecule does not appear to occur as a racemate. Here, we present a short synthesis of (-)-sinoracutine that relies on a highly diastereoselective Pauson-Khand reaction and a Mandai-Claisen reaction to install the quaternary stereocenter. Our work establishes the absolute configuration of the levorotatory isomer and suggests that the optical purity of sinoracutine varies in nature due to its gradual racemization. Experimental evidence supports this proposal, and a plausible mechanism for the racemization is provided.
PMID: 27990734
ISSN: 1521-3773
CID: 2484152
Uner Tan syndrome caused by a homozygous TUBB2B mutation affecting microtubule stability
Breuss, Martin W; Nguyen, Thai; Srivatsan, Anjana; Leca, Ines; Tian, Guoling; Fritz, Tanja; Hansen, Andi H; Musaev, Damir; McEvoy-Venneri, Jennifer; James, Kiely N; Rosti, Rasim O; Scott, Eric; Tan, Uner; Kolodner, Richard D; Cowan, Nicholas J; Keays, David A; Gleeson, Joseph G
The integrity and dynamic properties of the microtubule cytoskeleton are indispensable for the development of the mammalian brain. Consequently, mutations in the genes that encode the structural component (the alpha/beta-tubulin heterodimer) can give rise to severe, sporadic neurodevelopmental disorders. These are commonly referred to as the tubulinopathies. Here we report the addition of recessive quadrupedalism, also known as Uner Tan syndrome (UTS), to the growing list of diseases caused by tubulin variants. Analysis of a consanguineous UTS family identified a biallelic TUBB2B mutation, resulting in a p.R390Q amino acid substitution. In addition to the identifying quadrupedal locomotion, all three patients showed severe cerebellar hypoplasia. None, however, displayed the basal ganglia malformations typically associated with TUBB2B mutations. Functional analysis of the R390Q substitution revealed that it did not affect the ability of beta-tubulin to fold or become assembled into the alpha/beta-heterodimer, nor did it influence the incorporation of mutant-containing heterodimers into microtubule polymers. The 390Q mutation in S. cerevisiae TUB2 did not affect growth under basal conditions, but did result in increased sensitivity to microtubule-depolymerizing drugs, indicative of a mild impact of this mutation on microtubule function. The TUBB2B mutation described here represents an unusual recessive mode of inheritance for missense-mediated tubulinopathies and reinforces the sensitivity of the developing cerebellum to microtubule defects.
PMCID:6075555
PMID: 28013290
ISSN: 1460-2083
CID: 2506982
Maternal choline supplementation in a mouse model of Down syndrome: Effects on attention and nucleus basalis/substantia innominata neuron morphology in adult offspring
Powers, Brian E; Kelley, Christy M; Velazquez, Ramon; Ash, Jessica A; Strawderman, Myla S; Alldred, Melissa J; Ginsberg, Stephen D; Mufson, Elliott J; Strupp, Barbara J
The Ts65Dn mouse model of Down syndrome (DS) and Alzheimer's disease (AD) exhibits cognitive impairment and degeneration of basal forebrain cholinergic neurons (BFCNs). Our prior studies demonstrated that maternal choline supplementation (MCS) improves attention and spatial cognition in Ts65Dn offspring, normalizes hippocampal neurogenesis, and lessens BFCN degeneration in the medial septal nucleus (MSN). Here we determined whether (i) BFCN degeneration contributes to attentional dysfunction, and (ii) whether the attentional benefits of perinatal MCS are due to changes in BFCN morphology. Ts65Dn dams were fed either a choline-supplemented or standard diet during pregnancy and lactation. Ts65Dn and disomic (2N) control offspring were tested as adults (12-17months of age) on a series of operant attention tasks, followed by morphometric assessment of BFCNs. Ts65Dn mice demonstrated impaired learning and attention relative to 2N mice, and MCS significantly improved these functions in both genotypes. We also found, for the first time, that the number of BFCNs in the nucleus basalis of Meynert/substantia innominata (NMB/SI) was significantly increased in Ts65Dn mice relative to controls. In contrast, the number of BFCNs in the MSN was significantly decreased. Another novel finding was that the volume of BFCNs in both basal forebrain regions was significantly larger in Ts65Dn mice. MCS did not normalize any of these morphological abnormalities in the NBM/SI or MSN. Finally, correlational analysis revealed that attentional performance was inversely associated with BFCN volume, and positively associated with BFCN density. These results support the lifelong attentional benefits of MCS for Ts65Dn and 2N offspring and have profound implications for translation to human DS and pathology attenuation in AD.
PMCID:5177989
PMID: 27840230
ISSN: 1873-7544
CID: 2310852
Sex differences in hippocampal area CA3 pyramidal cells
Scharfman, Helen E; MacLusky, Neil J
Numerous studies have demonstrated differences between males and females in hippocampal structure, function, and plasticity. There also are many studies about the different predisposition of a males and females for disorders where the hippocampus plays an important role. Many of these reports focus on area CA1, but other subfields are also very important, and unlikely to be the same as area CA1 based on what is known. Here we review basic studies of male and female structure, function, and plasticity of area CA3 pyramidal cells of adult rats. The data suggest that the CA3 pyramidal cells of males and females are distinct in structure, function, and plasticity. These sex differences cannot be simply explained by the effects of circulating gonadal hormones. This view agrees with previous studies showing that there are substantial sex differences in the brain that cannot be normalized by removing the gonads and depleting peripheral gonadal hormones. Implications of these comparisons for understanding sex differences in hippocampal function and dysfunction are discussed. (c) 2016 Wiley Periodicals, Inc.
PMCID:5120657
PMID: 27870399
ISSN: 1097-4547
CID: 2314172