Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14178


Comparative pathobiology of beta-amyloid and the unique susceptibility of humans to Alzheimer's disease

Rosen, Rebecca F; Tomidokoro, Yasushi; Farberg, Aaron S; Dooyema, Jeromy; Ciliax, Brian; Preuss, Todd M; Neubert, Thomas A; Ghiso, Jorge A; LeVine, Harry 3rd; Walker, Lary C
The misfolding and accumulation of the protein fragment beta-amyloid (Abeta) is an early and essential event in the pathogenesis of Alzheimer's disease (AD). Despite close biological similarities among primates, humans appear to be uniquely susceptible to the profound neurodegeneration and dementia that characterize AD, even though nonhuman primates deposit copious Abeta in senile plaques and cerebral amyloid-beta angiopathy as they grow old. Because the amino acid sequence of Abeta is identical in all primates studied to date, we asked whether differences in the properties of aggregated Abeta might underlie the vulnerability of humans and the resistance of other primates to AD. In a comparison of aged squirrel monkeys (Saimiri sciureus) and humans with AD, immunochemical and mass spectrometric analyses indicate that the populations of Abeta fragments are largely similar in the 2 species. In addition, Abeta-rich brain extracts from the brains of aged squirrel monkeys and AD patients similarly seed the deposition of Abeta in a transgenic mouse model. However, the epitope exposure of aggregated Abeta differs in sodium dodecyl sulfate-stable oligomeric Abeta from the 2 species. In addition, the high-affinity binding of 3H Pittsburgh Compound B to Abeta is significantly diminished in tissue extracts from squirrel monkeys compared with AD patients. These findings support the hypothesis that differences in the pathobiology of aggregated Abeta among primates are linked to post-translational attributes of the misfolded protein, such as molecular conformation and/or the involvement of species-specific cofactors.
PMCID:4913040
PMID: 27318146
ISSN: 1558-1497
CID: 2145402

Zeb2 recruits HDAC-NuRD to inhibit Notch and controls Schwann cell differentiation and remyelination

Wu, Lai Man Natalie; Wang, Jincheng; Conidi, Andrea; Zhao, Chuntao; Wang, Haibo; Ford, Zachary; Zhang, Liguo; Zweier, Christiane; Ayee, Brian G; Maurel, Patrice; Zwijsen, An; Chan, Jonah R; Jankowski, Michael P; Huylebroeck, Danny; Lu, Q Richard
The mechanisms that coordinate and balance a complex network of opposing regulators to control Schwann cell (SC) differentiation remain elusive. Here we demonstrate that zinc-finger E-box-binding homeobox 2 (Zeb2, also called Sip1) transcription factor is a critical intrinsic timer that controls the onset of SC differentiation by recruiting histone deacetylases HDAC 1 and 2 (HDAC1/2) and nucleosome remodeling and deacetylase complex (NuRD) co-repressor complexes in mice. Zeb2 deletion arrests SCs at an undifferentiated state during peripheral nerve development and inhibits remyelination after injury. Zeb2 antagonizes inhibitory effectors including Notch and Sox2. Importantly, genome-wide transcriptome analysis reveals a Zeb2 target gene encoding the Notch effector Hey2 as a potent inhibitor for Schwann cell differentiation. Strikingly, a genetic Zeb2 variant associated with Mowat-Wilson syndrome disrupts the interaction with HDAC1/2-NuRD and abolishes Zeb2 activity for SC differentiation. Therefore, Zeb2 controls SC maturation by recruiting HDAC1/2-NuRD complexes and inhibiting a Notch-Hey2 signaling axis, pointing to the critical role of HDAC1/2-NuRD activity in peripheral neuropathies caused by ZEB2 mutations.
PMCID:4961522
PMID: 27294509
ISSN: 1546-1726
CID: 3105102

Nipple Reconstruction with the Biodesign Nipple Reconstruction Cylinder: A Prospective Clinical Study

Collins, Brendan; Williams, Jeremy Z; Karu, Heather; Hodde, Jason P; Martin, Victoria A; Gurtner, Geoffrey C
BACKGROUND:Nipple reconstruction is the last stage in cosmetic reconstruction of the breast after mastectomy, but no method produces reliable and consistent aesthetic results. This study examined the use of the Biodesign Nipple Reconstruction Cylinder (NRC) during reconstruction of the nipple after mastectomy. METHODS:Patients with a history of breast cancer and mastectomy desiring nipple reconstruction were invited to participate. After obtaining consent, unilateral or bilateral nipple reconstruction was performed. Skin flaps were raised, the NRC was placed beneath the flaps as a stent, and the site was protected for up to 4 weeks with a nipple shield. Nipple projection was measured for 12 months after surgery. Patient satisfaction was measured and adverse events were recorded. Follow-up examinations were performed at 1 week, and then at 1, 3, 6, and 12 months after surgery. RESULTS:Eighty-two nipple reconstructions were performed in 50 patients. Related postoperative adverse events were minor, but reported in 8 reconstructions (9.8%) representing 7 patients (14.0%). Average projection at 6 and 12 months was 4.1 ± 1.6 mm and 3.8 ± 1.5 mm, respectively, compared with 10.5 ± 2.2 mm 1 week after surgery. Of patients completing the satisfaction questionnaire at 12 months, 70/75 (93.3%) of reconstructions were rated "pleased" or "very pleased" with the overall outcome. Overall, 45/46 (97.8%) patients would recommend nipple reconstruction to other women. CONCLUSIONS:The Biodesign NRC offers a safe alternative to nipple reconstruction, resulting in stable projection and a high level of patient satisfaction for 12 months after placement.
PMCID:5010323
PMID: 27622100
ISSN: 2169-7574
CID: 3090512

Extracellular matrix protein 1, a direct targeting molecule of parathyroid hormone-related peptide, negatively regulates chondrogenesis and endochondral ossification via associating with progranulin growth factor

Kong, Li; Zhao, Yun-Peng; Tian, Qing-Yun; Feng, Jian-Quan; Kobayashi, Tatsuya; Merregaert, Joseph; Liu, Chuan-Ju
Chondrogenesis and endochondral ossification are precisely controlled by cellular interactions with surrounding matrix proteins and growth factors that mediate cellular signaling pathways. Here, we report that extracellular matrix protein 1 (ECM1) is a previously unrecognized regulator of chondrogenesis. ECM1 is induced in the course of chondrogenesis and its expression in chondrocytes strictly depends on parathyroid hormone-related peptide (PTHrP) signaling pathway. Overexpression of ECM1 suppresses, whereas suppression of ECM1 enhances, chondrocyte differentiation and hypertrophyin vitroandex vivo In addition, target transgene of ECM1 in chondrocytes or osteoblasts in mice leads to striking defects in cartilage development and endochondral bone formation. Of importance, ECM1 seems to be critical for PTHrP action in chondrogenesis, as blockage of ECM1 nearly abolishes PTHrP regulation of chondrocyte hypertrophy, and overexpression of ECM1 rescues disorganized growth plates of PTHrP-null mice. Furthermore, ECM1 and progranulin chondrogenic growth factor constitute an interaction network and act in concert in the regulation of chondrogenesis.-Kong, L., Zhao, Y.-P., Tian, Q.-Y., Feng, J.-Q., Kobayashi, T., Merregaert, J., Liu, C.-J. Extracellular matrix protein 1, a direct targeting molecule of parathyroid hormone-related peptide, negatively regulates chondrogenesis and endochondral ossificationviaassociating with progranulin growth factor.
PMCID:4970607
PMID: 27075243
ISSN: 1530-6860
CID: 2078352

Loss of protein association causes cardiolipin degradation in Barth syndrome

Xu, Yang; Phoon, Colin K L; Berno, Bob; D'Souza, Kenneth; Hoedt, Esthelle; Zhang, Guoan; Neubert, Thomas A; Epand, Richard M; Ren, Mindong; Schlame, Michael
Cardiolipin is a specific mitochondrial phospholipid that has a high affinity for proteins and that stabilizes the assembly of supercomplexes involved in oxidative phosphorylation. We found that sequestration of cardiolipin in protein complexes is critical to protect it from degradation. The turnover of cardiolipin is slower by almost an order of magnitude than the turnover of other phospholipids. However, in subjects with Barth syndrome, cardiolipin is rapidly degraded via the intermediate monolyso-cardiolipin. Treatments that induce supercomplex assembly decrease the turnover of cardiolipin and the concentration of monolyso-cardiolipin, whereas dissociation of supercomplexes has the opposite effect. Our data suggest that cardiolipin is uniquely protected from normal lipid turnover by its association with proteins, but this association is compromised in subjects with Barth syndrome, leading cardiolipin to become unstable, which in turn causes the accumulation of monolyso-cardiolipin.
PMCID:4955704
PMID: 27348092
ISSN: 1552-4469
CID: 2166952

A new method for vitrifying samples for cryoEM

Razinkov, Ivan; Dandey, Venkat; Wei, Hui; Zhang, Zhening; Melnekoff, David; Rice, William J; Wigge, Christoph; Potter, Clinton S; Carragher, Bridget
Almost every aspect of cryo electron microscopy (cryoEM) has been automated over the last few decades. One of the challenges that remains to be addressed is the robust and reliable preparation of vitrified specimens of suitable ice thickness. We present results from a new device for preparing vitrified samples. The successful use of the device is coupled to a new "self-blotting" grid that we have developed to provide a method for spreading a sample to a thin film without the use of externally applied filter paper. This new approach has the advantage of using small amounts of protein material, resulting in large areas of ice of a well defined thickness containing evenly distributed single particles. We believe that these methods will in the future result in a system for vitrifying grids that is completely automated.
PMCID:5464370
PMID: 27288865
ISSN: 1095-8657
CID: 3800082

An aromatic cap seals the substrate binding site in an ECF-type S subunit for riboflavin

Karpowich, Nathan K; Song, Jinmei; Wang, Da-Neng
ECF transporters are a family of active membrane transporters for essential micronutrients, such as vitamins and trace metals. Found exclusively in archaea and bacteria, these transporters are composed of four subunits: an integral membrane substrate-binding subunit (EcfS), a transmembrane coupling subunit (EcfT), and two ATP-binding cassette ATPases (EcfA and EcfA'). We have characterized the structural basis of substrate binding by the EcfS subunit for riboflavin from T. maritima, TmRibU. TmRibU binds riboflavin with high affinity, and the protein-substrate complex is exceptionally stable in solution. The crystal structure of riboflavin-bound TmRibU reveals an electronegative binding pocket at the extracellular surface in which the substrate is completely buried. Analysis of the intermolecular contacts indicates that nearly every available substrate hydrogen bond is satisfied. A conserved aromatic residue at the extracellular end of TM5, Tyr130, caps the binding site to generate a substrate-bound occluded state, and nonconservative mutation of Tyr130 reduces the stability of this conformation. Using a novel fluorescence binding assay, we find that an aromatic residue at this position is essential for high affinity substrate binding. Comparison with other S subunit structures suggests that TM5 and Loop5-6 contain a dynamic conserved motif that plays a key role in gating substrate entry and release by S subunits of ECF transporters.
PMCID:4975955
PMID: 27312125
ISSN: 1089-8638
CID: 2145272

Whole-organism lineage tracing by combinatorial and cumulative genome editing

McKenna, Aaron; Findlay, Gregory M; Gagnon, James A; Horwitz, Marshall S; Schier, Alexander F; Shendure, Jay
Multicellular systems develop from single cells through distinct lineages. However, current lineage-tracing approaches scale poorly to whole, complex organisms. Here, we use genome editing to progressively introduce and accumulate diverse mutations in a DNA barcode over multiple rounds of cell division. The barcode, an array of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 target sites, marks cells and enables the elucidation of lineage relationships via the patterns of mutations shared between cells. In cell culture and zebrafish, we show that rates and patterns of editing are tunable and that thousands of lineage-informative barcode alleles can be generated. By sampling hundreds of thousands of cells from individual zebrafish, we find that most cells in adult organs derive from relatively few embryonic progenitors. In future analyses, genome editing of synthetic target arrays for lineage tracing (GESTALT) can be used to generate large-scale maps of cell lineage in multicellular systems for normal development and disease.
PMCID:4967023
PMID: 27229144
ISSN: 1095-9203
CID: 3104112

ANGPTL4 deficiency in haematopoietic cells promotes monocyte expansion and atherosclerosis progression

Aryal, Binod; Rotllan, Noemi; Araldi, Elisa; Ramirez, Cristina M; He, Shun; Chousterman, Benjamin G; Fenn, Ashley M; Wanschel, Amarylis; Madrigal-Matute, Julio; Warrier, Nikhil; Martin-Ventura, Jose L; Swirski, Filip K; Suarez, Yajaira; Fernandez-Hernando, Carlos
Lipid accumulation in macrophages has profound effects on macrophage gene expression and contributes to the development of atherosclerosis. Here, we report that angiopoietin-like protein 4 (ANGPTL4) is the most highly upregulated gene in foamy macrophages and it's absence in haematopoietic cells results in larger atherosclerotic plaques, characterized by bigger necrotic core areas and increased macrophage apoptosis. Furthermore, hyperlipidemic mice deficient in haematopoietic ANGPTL4 have higher blood leukocyte counts, which is associated with an increase in the common myeloid progenitor (CMP) population. ANGPTL4-deficient CMPs have higher lipid raft content, are more proliferative and less apoptotic compared with the wild-type (WT) CMPs. Finally, we observe that ANGPTL4 deficiency in macrophages promotes foam cell formation by enhancing CD36 expression and reducing ABCA1 localization in the cell surface. Altogether, these findings demonstrate that haematopoietic ANGPTL4 deficiency increases atherogenesis through regulating myeloid progenitor cell expansion and differentiation, foam cell formation and vascular inflammation.
PMCID:4974469
PMID: 27460411
ISSN: 2041-1723
CID: 2191152

Stressed telomeres without POT1 enhance tumorigenesis [Editorial]

Sfeir, Agnel; Denchi, Eros Lazzerini
PMCID:5216905
PMID: 27419638
ISSN: 1949-2553
CID: 2719212