Try a new search

Format these results:

Searched for:

person:nwb2

Total Results:

391


Human corneal epithelial cells express functional PAR-1 and PAR-2

Lang, Roland; Song, Peter I; Legat, Franz J; Lavker, Robert M; Harten, Brad; Kalden, Henner; Grady, Eileen F; Bunnett, Nigel W; Armstrong, Cheryl A; Ansel, John C
PURPOSE: The objective of this study was to examine whether HCECs express functional proteinase-activated receptor (PAR)-1 and -2 and evaluate the effects of receptor activation on corneal epithelial cell proinflammatory cytokine production. METHODS: Expression of PAR-1 and -2 mRNAs was determined by RT-PCR in cultured primary human corneal epithelial cells (HCECs) and the human corneal epithelial cell line HCE-T. Localization of PAR-1 and -2 in whole normal human corneas was determined by immunofluorescence with PAR-1 and -2 antibodies. The functional competence of PAR-1 and -2 in corneal epithelial cells was assessed by measuring the rapid induction of intracellular [Ca(2+)] in response to thrombin, trypsin, and specific receptor-activating peptides derived from the tethered ligands of the PAR receptors. HCE-T expression of cytokines (IL-6, IL-8, and TNFalpha) in response to activation of PAR-1 and -2 was measured by quantitative RT-PCR and ELISA. RESULTS: Functional PAR-1 and -2 were expressed in both HCECs and HCE-T cells. Immunoreactivity for PAR-1 and -2 was detected in the outer epithelial layer of the cornea in whole human corneal sections. Activation of PAR-1 and -2 led to upregulation in HCE-T cells of both expression of mRNA and secretion of the proinflammatory cytokines IL-6, IL-8, and TNFalpha. CONCLUSIONS: The results show for the first time that functional PAR-1 and -2 are present in human cornea. Activation of these receptors results in the production of various corneal epithelial cell proinflammatory cytokines. These observations indicate that PAR-1 and -2 may play an important role in modulating corneal inflammatory and wound-healing responses. These receptors may be useful therapeutic targets in several corneal disease processes
PMID: 12506061
ISSN: 0146-0404
CID: 49563

Neutral endopeptidase activity is increased in the skin of subjects with diabetic ulcers

Antezana, MarcosA; Sullivan, Stephen R; Usui, MarciaL; Gibran, NicoleS; Spenny, MichelleL; Larsen, JerrieA; Ansel, JohnC; Bunnett, NigelW; Olerud, JohnE
Cutaneous sensory nerves mediate inflammation and wound healing by releasing neuropeptides, such as substance P, which stimulates pro-inflammatory responses by keratinocytes, fibroblasts, and endothelial cells. The cell surface enzyme, neutral endopeptidase, degrades substance P, thereby regulating its biologic actions. We hypothesized that neutral endopeptidase enzymatic activity is increased in chronic wounds and skin from subjects with diabetes. We compared cutaneous neutral endopeptidase expression and enzymatic activity between normal controls and diabetic subjects with neuropathy and chronic wounds. Skin samples from subjects with diabetes were taken at the time of amputation for nonhealing ulcers. Skin taken from the ulcer margin, 1 cm from the ulcer (adjacent), and from the most proximal region of the amputated leg were studied. Skin biopsies from the leg of healthy control subjects were also studied. Neutral endopeptidase was localized by immunohistochemistry in all tissue sections. Neutral endopeptidase activity was measured using a fluorimetric assay. The median neutral endopeptidase activity of the ulcer margin was 1.21 x higher (p>0.2) than adjacent skin, 5.26 (p<0.001) than proximal skin, and 15.22 x higher (p<0.001) than control skin. Adjacent skin had a median neutral endopeptidase activity 4.34 x higher (p<0.001) than proximal skin and 12.58 x higher (p<0.001) than control skin. The median neutral endopeptidase activity of proximal skin was 2.90 x higher (p<0.001) than control skin. This elevated neutral endopeptidase activity in the skin and chronic ulcers of subjects with diabetes combined with peripheral neuropathy may contribute to deficient neuroinflammatory signaling and may impair wound healing in subjects with diabetes.
PMID: 12485446
ISSN: 0022-202x
CID: 4159262

Protease-activated receptor 2 mediates eosinophil infiltration and hyperreactivity in allergic inflammation of the airway

Schmidlin, Fabien; Amadesi, Silvia; Dabbagh, Karim; Lewis, David E; Knott, Patrick; Bunnett, Nigel W; Gater, Paul R; Geppetti, Pierangelo; Bertrand, Claude; Stevens, Mary E
Trypsin and mast cell tryptase can signal to epithelial cells, myocytes, and nerve fibers of the respiratory tract by cleaving proteinase-activated receptor 2 (PAR2). Since tryptase inhibitors are under development to treat asthma, a precise understanding of the contribution of PAR2 to airway inflammation is required. We examined the role of PAR2 in allergic inflammation of the airway by comparing OVA-sensitized and -challenged mice lacking or overexpressing PAR2. In wild-type mice, immunoreactive PAR2 was detected in airway epithelial cells and myocytes, and intranasal administration of a PAR2 agonist stimulated macrophage infiltration into bronchoalveolar lavage fluid. OVA challenge of immunized wild-type mice stimulated infiltration of leukocytes into bronchoalveolar lavage and induced airway hyperreactivity to inhaled methacholine. Compared with wild-type animals, eosinophil infiltration was inhibited by 73% in mice lacking PAR2 and increased by 88% in mice overexpressing PAR2. Similarly, compared with wild-type animals, airway hyperreactivity to inhaled methacholine (40 micro g/ml) was diminished 38% in mice lacking PAR2 and increased by 52% in mice overexpressing PAR2. PAR2 deletion also reduced IgE levels to OVA sensitization by 4-fold compared with those of wild-type animals. Thus, PAR2 contributes to the development of immunity and to allergic inflammation of the airway. Our results support the proposal that tryptase inhibitors and PAR2 antagonists may be useful therapies for inflammatory airway disease.
PMID: 12391252
ISSN: 0022-1767
CID: 4156732

Induction of intestinal inflammation in mouse by activation of proteinase-activated receptor-2

Cenac, Nicolas; Coelho, Anne-Marie; Nguyen, Cathy; Compton, Steven; Andrade-Gordon, Patricia; MacNaughton, Wallace K; Wallace, John L; Hollenberg, Morley D; Bunnett, Nigel W; Garcia-Villar, Rafael; Bueno, Lionel; Vergnolle, Nathalie
Proteinase-activated receptor (PAR)-2, a G-protein-coupled receptor for trypsin and mast cell tryptase, is highly expressed in the intestine. Luminal trypsin and tryptase are elevated in the colon of inflammatory bowel disease patients. We hypothesized that luminal proteinases activate PAR-2 and induce colonic inflammation. Mice received intracolonically PAR-2 agonists (trypsin, tryptase, and a selective PAR-2-activating peptide) or control drugs (boiled enzymes, inactive peptide) and inflammatory parameters were followed at various times after this treatment. Colonic administration of PAR-2 agonists up-regulated PAR-2 expression and induced an inflammatory reaction characterized by granulocyte infiltration, increased wall thickness, tissue damage, and elevated T-helper cell type 1 cytokine. The inflammation was maximal between 4 and 6 hours and was resolved 48 hours after the intracolonic administration. PAR-2 activation also increased paracellular permeability of the colon and induced bacterial trans-location into peritoneal organs. These proinflammatory and pathophysiological changes observed in wild-type mice were not detected in PAR-2-deficient mice. Luminal proteinases activate PAR-2 in the mouse colon to induce inflammation and disrupt the integrity of the intestinal barrier. Because trypsin and tryptase are found at high levels in the colon lumen of patients with Crohn's disease or ulcerative colitis, our data may bear directly on the pathophysiology of human inflammatory bowel diseases.
PMCID:1850779
PMID: 12414536
ISSN: 0002-9440
CID: 4156752

Diminished neuropeptide levels contribute to the impaired cutaneous healing response associated with diabetes mellitus

Gibran, Nicole S; Jang, Young Chul; Isik, F Frank; Greenhalgh, David G; Muffley, Lara A; Underwood, Robert A; Usui, Marcia L; Larsen, Jerrie; Smith, Douglas G; Bunnett, Nigel; Ansel, John C; Olerud, John E
Background. Patients with diabetic sensory neuropathy have significant risk of chronic ulcers. Insufficient nerve-derived mediators such as substance P (SP) may contribute to the impaired response to injury. Mutant diabetic mice (db/db), which develop neuropathy and have delayed healing, may provide a model to study the role of nerves in cutaneous injury.Methods. Skin from human chronic nonhealing ulcers and age-matched control skin was immunohistochemically evaluated for nerves. Nerve counts were also compared in murine diabetic (C57BL/KsJ-m+/+ Lepr(db); db/db) and nondiabetic (db/-) skin. Excisional wounds on the backs of db/db and db/- mice were grouped as: (a) untreated db/- mice; (b) untreated db/db mice; (c) db/db mice with polyethylene glycol (PEG); (d) db/db mice with PEG and SP 10(-9) M; or (e) db/db mice with PEG and SP 10(-6) M.Results. We demonstrated fewer nerves in the epidermis and papillary dermis of skin from human subjects with diabetes. Likewise, db/db murine skin had significantly fewer epidermal nerves than nondiabetic littermates. We confirmed increased healing times in db/db mice (51.7 days) compared to db/- littermates (19.8 days; P </= 0.001). SP 10(-6) M (44 days; P = 0.02) and SP 10(-9) M (45 days; P = 0.03) shortened time to closure compared to PEG treatment alone (68 days). Since there was no difference in the percentage contraction in these treatment groups, SP may favorably promote wound epithelization.Conclusions. Our data support the use of db/db murine excisional wounds to evaluate the role of nerves in healing. We have demonstrated that exogenous SP improves wound healing kinetics in an animal model.
PMID: 12443724
ISSN: 0022-4804
CID: 4158852

Differences in receptor binding and stability to enzymatic digestion between CCK-8 and CCK-58

Reeve, Joseph R; McVey, Douglas C; Bunnett, Nigel W; Solomon, Travis E; Keire, David A; Ho, F J; Davis, Michael T; Lee, Terry D; Shively, John E; Vigna, Steven R
INTRODUCTION AND AIMS/OBJECTIVE:It has been proposed that distinct tertiary structures of the C-terminus of CCK-8 and CCK-58 result in differences in stimulation of pancreatic amylase secretion. Binding of CCK-8 and CCK-58 to CCK-A and CCK-B receptors and stability to enzymatic digestion were used as independent probes for tertiary structure of the C-terminus. METHODOLOGY/METHODS:Canine CCK-58 was purified from intestinal extracts and CCK-8 was purchased. Their amounts were determined by amino acid analysis. The effect of tertiary structure on receptor binding at CCK-A receptors and CCK-B receptors was evaluated using membrane preparations from mouse pancreas and brain. The influence of C-terminal tertiary structure on stability to enzymatic digestion was evaluated by reacting CCK-8 and CCK-58 with endopeptidase 24:11. RESULTS:CCK-58 was three times more potent than CCK-8 for binding mouse pancreatic membrane CCK-A receptors and equipotent to CCK-8 for binding mouse brain CCK-B receptors. CCK-8 was readily digested by endopeptidase 24:11, whereas CCK-58 was not. CONCLUSIONS:The results strongly support the hypothesis that differences in tertiary structure of the carboxyl terminus of CCK-8 and CCK-58 influence receptor binding and stability to enzymatic digestion.
PMID: 12370550
ISSN: 1536-4828
CID: 4156722

Recombinant human neutral endopeptidase ameliorates pancreatic elastase-induced lung injury

Lightner, Amy M; Jordan, Thomas H; Bunnett, Nigel W; Grady, Eileen F; Kirkwood, Kimberly S
BACKGROUND:Genetic deletion of neutral endopeptidase (NEP), a cell-surface metalloprotease that degrades proinflammatory peptides, exacerbates lung injury induced by pancreatic elastase in a model of pancreatitis-associated lung injury. We tested 3 hypotheses: (1) genetic deletion of NEP prolongs lung recovery after elastase injections; (2) elastase-mediated lung injury is associated with down-regulation of NEP; and (3) pretreatment of NEP (-/-) and (+/+) animals with recombinant human NEP (rhNEP) reduces pulmonary damage in this model. METHODS:NEP (+/+) or (-/-) mice were injected with pancreatic elastase (0.085 U/g/dose intraperitoneally) or saline carrier at t = 0 hours and t = 1 hour. Some mice were pretreated with rhNEP (3 mg/kg intraperitoneally). Serum elastase, lung histologic score, myeloperoxidase, and NEP activities were measured at 4, 8, or 12 hours. RESULTS:NEP (-/-) mice had worse pulmonary inflammation at 4 and 8 hours versus (+/+) mice. Lung NEP activity was similar in elastase-treated and control (+/+) animals. Pretreatment with rhNEP reduced myeloperoxidase and improved histology at 4 hours in NEP (-/-) and (+/+) mice. CONCLUSIONS:Pancreatic elastase induces lung injury that is worse and prolonged in NEP (-/-) mice. Pretreatment with rhNEP ameliorates this injury. Thus, upregulation of NEP is a potential therapeutic approach for pancreatitis-associated lung injury.
PMID: 12219011
ISSN: 0039-6060
CID: 4156712

Neutral endopeptidase inhibition in diabetic wound repair

Spenny, Michelle L; Muangman, Pornprom; Sullivan, Stephen R; Bunnett, Nigel W; Ansel, John C; Olerud, John E; Gibran, Nicole S
In response to cutaneous injury, sensory nerves release substance P, a proinflammatory neuropeptide. Substance P stimulates mitogenesis and migration of keratinocytes, fibroblasts, and endothelial cells. Neutral endopeptidase (NEP), a cell surface metallopeptidase, degrades substance P. Chronic nonhealing wounds and skin from patients with diabetes mellitus show increased NEP localization and activity. We hypothesized that increased NEP may retard wound healing and that NEP inhibition would improve closure kinetics in an excisional murine wound model. NEP enzyme activity was measured in skin samples from mutant diabetic mice (db/db) and nondiabetic (db/-) littermates by degradation of glutaryl-ala-ala-phe-4-methoxy-2-naphthylamine. Full-thickness 6-mm dorsal excisional wounds treated with normal saline or the NEP inhibitor thiorphan (10 microM or 25 microM) for 7 days were followed until closure. Histological examination and NEP activity were evaluated in a subset of wounds. NEP activity in unwounded db/db skin (20.6 pmol MNA/hr/ microg) significantly exceeded activity in db/-skin (7.9 pmol MNA/hr/ microg; p = 0.02). In db/db mice, 25 microM thiorphan shortened time to closure (18.0 days; p < 0.05) compared to normal saline (23.5 days). NEP inhibition did not alter closure kinetics in db/-mice. While the inflammatory response appeared enhanced in early wounds treated with thiorphan, blinded histological scoring of healed wounds using a semiquantitative scale showed no difference in inflammation. Unwounded skin from diabetic mice shows increased NEP activity and NEP inhibition improved wound closure kinetics without affecting contraction, suggesting that its principal effect was to augment epithelialization.
PMID: 12406165
ISSN: 1067-1927
CID: 4156742

Heterologous regulation of trafficking and signaling of G protein-coupled receptors: beta-arrestin-dependent interactions between neurokinin receptors

Schmidlin, Fabien; Déry, Olivier; Bunnett, Nigel W; Grady, Eileen F
Cells express multiple G protein-coupled receptors that are simultaneously or sequentially activated by agonists. The consequences of activating one receptor on signaling and trafficking of another receptor are unknown. We examined the effects of selective activation of the neurokinin 1 receptor (NK1R) on signaling and trafficking of the NK3R and vice versa. Selective agonists of NK1R and NK3R induced membrane translocation of beta-arrestins (beta-ARRs). Dominant negative beta-ARR(319-418) inhibited endocytosis of NK1R and NK3R. Whereas an NK1R agonist caused sequestration of NK1R with beta-ARR in the same endosomes, thereby depleting them from the cytosol, beta-ARRs did not prominently sequester with the activated NK3R and rapidly returned to the cytosol. In cells coexpressing both receptors, prior activation of the NK1R inhibited endocytosis and homologous desensitization of the NK3R, which was dose-dependently reversed by overexpression of beta-ARR1. Similar results were obtained in enteric neurons that naturally coexpress the NK1R and NK3R. In contrast, activation of the NK3R did not affect NK1R endocytosis or desensitization. Thus, the high-affinity and prolonged interaction of the NK1R with beta-ARRs depletes beta-ARRs from the cytosol and limits their role in desensitization and endocytosis of the NK3R. Because beta-ARRs are critical for desensitization, endocytosis, and mitogenic signaling of many receptors, this sequestration is likely to have important and widespread implications.
PMCID:122517
PMID: 11880656
ISSN: 0027-8424
CID: 4156702

Basolateral PAR-2 receptors mediate KCl secretion and inhibition of Na+ absorption in the mouse distal colon

Cuffe, John E; Bertog, Marko; Velázquez-Rocha, Sara; Dery, Olivier; Bunnett, Nigel; Korbmacher, Christoph
Proteinase-activated receptor-2 (PAR-2) may participate in epithelial ion transport regulation. Here we examined the effect of mouse activating peptide (mAP), a specific activator of PAR-2, on electrogenic transport of mouse distal colon using short-circuit current (I(SC)) measurements. Under steady-state conditions, apical application of amiloride (100 microM) revealed a positive I(SC) component of 74.3 +/- 6.8 microA x cm(-2) indicating the presence of Na+ absorption, while apical Ba2+ (10 mM) identified a negative I(SC) component of 26.2 +/- 1.8 microA x cm(-2) consistent with K+ secretion. Baseline Cl- secretion was minimal. Basolateral addition of 20 microM mAP produced a biphasic I(SC) response with an initial transient peak increase of 11.2 +/- 0.9 microA x cm(-2), followed by a sustained fall to a level 31.2 +/- 2.6 microA x cm(-2) (n = 43) below resting I(SC). The peak response was due to Cl- secretion as it was preserved in the presence of amiloride but was largely reduced in the presence of basolateral bumetanide (20 microM) or in the absence of extracellular Cl-. The secondary decline of I(SC) was also attenuated by bumetanide and by Ba2+, indicating that it is partly due to a stimulation of K+ secretion. In addition, the amiloride-sensitive I(SC) was slightly reduced by mAP, suggesting that inhibition of Na+ absorption also contributes to the I(SC) decline. Expression of PAR-2 in mouse distal colon was confirmed using RT-PCR and immunocytochemistry. We conclude that functional basolateral PAR-2 is present in mouse distal colon and that its activation stimulates Cl- and K+ secretion while inhibiting baseline Na+ absorption.
PMCID:2290120
PMID: 11850514
ISSN: 0022-3751
CID: 4158842