Searched for: school:SOM
Department/Unit:Cell Biology
Extracellular superoxide dismutase deficiency impairs wound healing in advanced age by reducing neovascularization and fibroblast function
Fujiwara, Toshihiro; Duscher, Dominik; Rustad, Kristine C; Kosaraju, Revanth; Rodrigues, Melanie; Whittam, Alexander J; Januszyk, Michael; Maan, Zeshaan N; Gurtner, Geoffrey C
Advanced age is characterized by impairments in wound healing, and evidence is accumulating that this may be due in part to a concomitant increase in oxidative stress. Extended exposure to reactive oxygen species (ROS) is thought to lead to cellular dysfunction and organismal death via the destructive oxidation of intra-cellular proteins, lipids and nucleic acids. Extracellular superoxide dismutase (ecSOD/SOD3) is a prime antioxidant enzyme in the extracellular space that eliminates ROS. Here, we demonstrate that reduced SOD3 levels contribute to healing impairments in aged mice. These impairments include delayed wound closure, reduced neovascularization, impaired fibroblast proliferation and increased neutrophil recruitment. We further establish that SOD3 KO and aged fibroblasts both display reduced production of TGF-beta1, leading to decreased differentiation of fibroblasts into myofibroblasts. Taken together, these results suggest that wound healing impairments in ageing are associated with increased levels of ROS, decreased SOD3 expression and impaired extracellular oxidative stress regulation. Our results identify SOD3 as a possible target to correct age-related cellular dysfunction in wound healing.
PMCID:4998179
PMID: 26663425
ISSN: 1600-0625
CID: 2032952
Partial BACE1 reduction in a Down syndrome mouse model blocks Alzheimer-related endosomal anomalies and cholinergic neurodegeneration: role of APP-CTF
Jiang, Ying; Rigoglioso, Andrew; Peterhoff, Corrinne M; Pawlik, Monika; Sato, Yutaka; Bleiwas, Cynthia; Stavrides, Philip; Smiley, John F; Ginsberg, Stephen D; Mathews, Paul M; Levy, Efrat; Nixon, Ralph A
beta-amyloid precursor protein (APP) and amyloid beta peptide (Abeta) are strongly implicated in Alzheimer's disease (AD) pathogenesis, although recent evidence has linked APP-betaCTF generated by BACE1 (beta-APP cleaving enzyme 1) to the development of endocytic abnormalities and cholinergic neurodegeneration in early AD. We show that partial BACE1 genetic reduction prevents these AD-related pathological features in the Ts2 mouse model of Down syndrome. Partially reducing BACE1 by deleting one BACE1 allele blocked development of age-related endosome enlargement in the medial septal nucleus, cerebral cortex, and hippocampus and loss of choline acetyltransferase (ChAT)-positive medial septal nucleus neurons. BACE1 reduction normalized APP-betaCTF elevation but did not alter Abeta40 and Abeta42 peptide levels in brain, supporting a critical role in vivo for APP-betaCTF in the development of these abnormalities. Although ameliorative effects of BACE1 inhibition on beta-amyloidosis and synaptic proteins levels have been previously noted in AD mouse models, our results highlight the additional potential value of BACE1 modulation in therapeutic targeting of endocytic dysfunction and cholinergic neurodegeneration in Down syndrome and AD.
PMCID:4773919
PMID: 26923405
ISSN: 1558-1497
CID: 2006252
Cleavage of p75 neurotrophin receptor is linked to Alzheimer's disease
Chao, M V
PMID: 26782055
ISSN: 1476-5578
CID: 1922092
Deconstructing brain-derived neurotrophic factor actions in adult brain circuits to bridge an existing informational gap in neuro-cell biology
Bowling, Heather; Bhattacharya, Aditi; Klann, Eric; Chao, Moses V
Brain-derived neurotrophic factor (BDNF) plays an important role in neurodevelopment, synaptic plasticity, learning and memory, and in preventing neurodegeneration. Despite decades of investigations into downstream signaling cascades and changes in cellular processes, the mechanisms of how BDNF reshapes circuits in vivo remain unclear. This informational gap partly arises from the fact that the bulk of studies into the molecular actions of BDNF have been performed in dissociated neuronal cultures, while the majority of studies on synaptic plasticity, learning and memory were performed in acute brain slices or in vivo. A recent study by Bowling-Bhattacharya et al., measured the proteomic changes in acute adult hippocampal slices following treatment and reported changes in proteins of neuronal and non-neuronal origin that may in concert modulate synaptic release and secretion in the slice. In this paper, we place these findings into the context of existing literature and discuss how they impact our understanding of how BDNF can reshape the brain.
PMCID:4828984
PMID: 27127458
ISSN: 1673-5374
CID: 2092682
Molecular development of fibular reduction in birds and its evolution from dinosaurs
Botelho, Joao Francisco; Smith-Paredes, Daniel; Soto-Acuna, Sergio; O'Connor, Jingmai; Palma, Veronica; Vargas, Alexander O
Birds have a distally reduced, splinter-like fibula that is shorter than the tibia. In embryonic development, both skeletal elements start out with similar lengths. We examined molecular markers of cartilage differentiation in chicken embryos. We found that the distal end of the fibula expresses Indian hedgehog (IHH), undergoing terminal cartilage differentiation, and almost no Parathyroid-related protein (PTHrP), which is required to develop a proliferative growth plate (epiphysis). Reduction of the distal fibula may be influenced earlier by its close contact with the nearby fibulare, which strongly expresses PTHrP. The epiphysis-like fibulare however then separates from the fibula, which fails to maintain a distal growth plate, and fibular reduction ensues. Experimental downregulation of IHH signaling at a postmorphogenetic stage led to a tibia and fibula of equal length: The fibula is longer than in controls and fused to the fibulare, whereas the tibia is shorter and bent. We propose that the presence of a distal fibular epiphysis may constrain greater growth in the tibia. Accordingly, many Mesozoic birds show a fibula that has lost its distal epiphysis, but remains almost as long as the tibia, suggesting that loss of the fibulare preceded and allowed subsequent evolution of great fibulo-tibial disparity.
PMCID:5069580
PMID: 26888088
ISSN: 1558-5646
CID: 2559472
Unexpected partial correction of metabolic and behavioral phenotypes of Alzheimer's APP/PSEN1 mice by gene targeting of diabetes/Alzheimer's-related Sorcs1
Knight, Elysse M; Ruiz, Henry H; Kim, Soong Ho; Harte, Jessica C; Hsieh, Wilson; Glabe, Charles; Klein, William L; Attie, Alan D; Buettner, Christoph; Ehrlich, Michelle E; Gandy, Sam
INTRODUCTION/BACKGROUND:Insulin resistance and type 2 diabetes mellitus (T2D) are associated with increased risk for cognitive impairment, Alzheimer's disease (AD) and vascular dementia. SORCS1 encodes a protein-sorting molecule genetically linked to both T2D and AD. The association of SORCS1 with both AD and T2D is sexually dimorphic in humans, with both disease associations showing more robust effects in females. Based on published evidence that manipulation of the mouse genome combining multiple genes related to cerebral amyloidosis, to T2D, or both, might provide novel mouse models with exacerbated amyloid and/or diabetes phenotypes, we assessed memory, glucose homeostasis, and brain biochemistry and pathology in male and female wild-type, Sorcs1 -/-, APP/PSEN1, and Sorcs1 -/- X APP/PSEN1 mice. RESULTS:Male mice with either the APP/PSEN1 or Sorcs1 -/- genotype displayed earlier onset and persistent impairment in both learning behavior and glucose homeostasis. Unlike prior examples in the literature, the behavioral and metabolic abnormalities in male mice were not significantly exacerbated when the two disease model mice (Sorcs1 -/- models T2D; APP/PSEN1 models AD) were crossed. However, female Sorcs1 -/- X APP/PSEN1 mice exhibited worse metabolic dysfunction than Sorcs1 -/- knockout mice and worse memory than wild-type mice. The deletion of Sorcs1 from APP/PSEN1 mutant mice led to no obvious changes in brain levels of total or oligomeric amyloid-beta (Aβ) peptide. CONCLUSIONS:In general, unexpectedly, there was a trend for gene targeting of Sorcs1-/- to partially mitigate, not exacerbate, the metabolic and amyloid pathologies. These results indicate that crossing AD model mice and T2D model mice may not always cause exacerbation of both the amyloidosis phenotype and the metabolic phenotype and highlight the unexpected pitfalls of creating mixed models of disease.
PMCID:4766719
PMID: 26916443
ISSN: 2051-5960
CID: 4903102
A Distributed Network for Social Cognition Enriched for Oxytocin Receptors
Mitre, Mariela; Marlin, Bianca J; Schiavo, Jennifer K; Morina, Egzona; Norden, Samantha E; Hackett, Troy A; Aoki, Chiye J; Chao, Moses V; Froemke, Robert C
Oxytocin is a neuropeptide important for social behaviors such as maternal care and parent-infant bonding. It is believed that oxytocin receptor signaling in the brain is critical for these behaviors, but it is unknown precisely when and where oxytocin receptors are expressed or which neural circuits are directly sensitive to oxytocin. To overcome this challenge, we generated specific antibodies to the mouse oxytocin receptor and examined receptor expression throughout the brain. We identified a distributed network of female mouse brain regions for maternal behaviors that are especially enriched for oxytocin receptors, including the piriform cortex, the left auditory cortex, and CA2 of the hippocampus. Electron microscopic analysis of the cerebral cortex revealed that oxytocin receptors were mainly expressed at synapses, as well as on axons and glial processes. Functionally, oxytocin transiently reduced synaptic inhibition in multiple brain regions and enabled long-term synaptic plasticity in the auditory cortex. Thus modulation of inhibition may be a general mechanism by which oxytocin can act throughout the brain to regulate parental behaviors and social cognition. SIGNIFICANCE STATEMENT: Oxytocin is an important peptide hormone involved in maternal behavior and social cognition, but it has been unclear what elements of neural circuits express oxytocin receptors due to the paucity of suitable antibodies. Here, we developed new antibodies to the mouse oxytocin receptor. Oxytocin receptors were found in discrete brain regions and at cortical synapses for modulating excitatory-inhibitory balance and plasticity. These antibodies should be useful for future studies of oxytocin and social behavior.
PMCID:4764667
PMID: 26911697
ISSN: 1529-2401
CID: 1964812
A Controlled Burn: Sensing Oxygen to Tune Fat Metabolism
Ringstad, Niels
Animals must decide when to consume precious fat stores in order to sustain life. In this issue of Cell Reports, Witham et al. report how oxygen-sensing neurons ensure this decision is made under environmental conditions that favor metabolic efficiency.
PMID: 26910527
ISSN: 2211-1247
CID: 1964782
Erratum: Nanoscale visualization of functional adhesion/excitability nodes at the intercalated disc [Correction]
Leo-Macias, Alejandra; Agullo-Pascual, Esperanza; Sanchez-Alonso, Jose L; Keegan, Sarah; Lin, Xianming; Arcos, Tatiana; Feng-Xia-Liang; Korchev, Yuri E; Gorelik, Julia; Fenyo, David; Rothenberg, Eli; Delmar, Mario
PMCID:4764909
PMID: 26899761
ISSN: 2041-1723
CID: 2045642
MicroRNA Regulation of Atherosclerosis
Feinberg, Mark W; Moore, Kathryn J
Atherosclerosis and its attendant clinical complications, such as myocardial infarction, stroke, and peripheral artery disease, are the leading cause of morbidity and mortality in Western societies. In response to biochemical and biomechanical stimuli, atherosclerotic lesion formation occurs from the participation of a range of cell types, inflammatory mediators, and shear stress. Over the past decade, microRNAs (miRNAs) have emerged as evolutionarily conserved, noncoding small RNAs that serve as important regulators and fine-tuners of a range of pathophysiological cellular effects and molecular signaling pathways involved in atherosclerosis. Accumulating studies reveal the importance of miRNAs in regulating key signaling and lipid homeostasis pathways that alter the balance of atherosclerotic plaque progression and regression. In this review, we highlight current paradigms of miRNA-mediated effects in atherosclerosis progression and regression. We provide an update on the potential use of miRNAs diagnostically for detecting increasing severity of coronary disease and clinical events. Finally, we provide a perspective on therapeutic opportunities and challenges for miRNA delivery in the field.
PMCID:4762069
PMID: 26892968
ISSN: 1524-4571
CID: 1949902