Searched for: school:SOM
Department/Unit:Neuroscience Institute
Topoisomerase IIβ Selectively Regulates Motor Neuron Identity and Peripheral Connectivity through Hox/Pbx-Dependent Transcriptional Programs
Edmond, Michaela; Hanley, Olivia; Philippidou, Polyxeni
Vital motor functions, such as respiration and locomotion, rely on the ability of spinal motor neurons (MNs) to acquire stereotypical positions in the ventral spinal cord and to project with high precision to their peripheral targets. These key properties of MNs emerge during development through transcriptional programs that dictate their subtype identity and connectivity; however, the molecular mechanisms that establish the transcriptional landscape necessary for MN specification are not fully understood. Here, we show that the enzyme topoisomerase IIβ (Top2β) controls MN migration and connectivity. Surprisingly, Top2β is not required for MN generation or survival but has a selective role in columnar specification. In the absence of Top2β, phrenic MN identity is eroded, while other motor columns are partially preserved but fail to cluster to their proper position. In Top2β-/- mice, peripheral connectivity is impaired as MNs exhibit a profound deficit in terminal branching. These defects likely result from the insufficient activation of Hox/Pbx-dependent transcriptional programs as Hox and Pbx genes are downregulated in the absence of Top2β. Top2β mutants recapitulate many aspects of Pbx mutant mice, such as MN disorganization and defects in medial motor column (MMC) specification. Our findings indicate that Top2β, a gene implicated in neurodevelopmental diseases such as autism spectrum disorders, plays a critical, cell-specific role in the assembly of motor circuits.
PMCID:5779120
PMID: 29379870
ISSN: 2373-2822
CID: 2933332
SparseCT: Interrupted-beam acquisition and sparse reconstruction for radiation dose reduction [Meeting Abstract]
Koesters, Thomas; Knoll, Florian; Sodickson, Aaron; Sodickson, Daniel K.; Otazo, Ricardo
ISI:000405562100025
ISSN: 0277-786x
CID: 4533852
Optical control of GIRK channels using visible light
Trads, Julie B; Burgstaller, Jessica; Laprell, Laura; Konrad, David B; de la Osa de la Rosa, Luis; Weaver, C David; Baier, Herwig; Trauner, Dirk; Barber, David M
G-protein coupled inwardly rectifying potassium (GIRK) channels are an integral part of inhibitory signal transduction pathways, reducing the activity of excitable cells via hyperpolarization. They play crucial roles in processes such as cardiac output, cognition and the coordination of movement. Therefore, the precision control of GIRK channels is of critical importance. Here, we describe the development of the azobenzene containing molecule VLOGO (Visible Light Operated GIRK channel Opener), which activates GIRK channels in the dark and is promptly deactivated when illuminated with green light. VLOGO is a valuable addition to the existing tools for the optical control of GIRK channels as it circumvents the need to use potentially harmful UV irradiation. We therefore believe that VLOGO will be a useful research tool for studying GIRK channels in biological systems.
PMID: 27901161
ISSN: 1477-0539
CID: 2484162
Functional Decoding and Meta-Analytic Connectivity Modeling in Adult Attention-Deficit/Hyperactivity Disorder
Cortese, Samuele; Castellanos, F Xavier; Eickhoff, Claudia R; D'Acunto, Giulia; Masi, Gabriele; Fox, Peter T; Laird, Angela R; Eickhoff, Simon B
BACKGROUND: Task-based functional magnetic resonance imaging (fMRI) studies of adult attention-deficit/hyperactivity disorder (ADHD) have revealed various ADHD-related dysfunctional brain regions, with heterogeneous findings across studies. Here, we used novel meta-analytic data-driven approaches to characterize the function and connectivity profile of ADHD-related dysfunctional regions consistently detected across studies. METHODS: We first conducted an activation likelihood estimation meta-analysis of 24 task-based fMRI studies in adults with ADHD. Each ADHD-related dysfunctional region resulting from the activation likelihood estimation meta-analysis was then analyzed using functional decoding based on ~7500 fMRI experiments in the BrainMap database. This approach allows mapping brain regions to functions not necessarily tested in individual studies, thus suggesting possible novel functions for those regions. Additionally, ADHD-related dysfunctional regions were clustered based on their functional coactivation profiles across all the experiments stored in BrainMap (meta-analytic connectivity modeling). RESULTS: ADHD-related hypoactivation was found in the left putamen, left inferior frontal gyrus (pars opercularis), left temporal pole, and right caudate. Functional decoding mapped the left putamen to cognitive aspects of music perception/reproduction and the left temporal lobe to language semantics; both these regions clustered together on the basis of their meta-analytic functional connectivity. Left inferior gyrus mapped to executive function tasks; right caudate mapped to both executive function tasks and music-related processes. CONCLUSIONS: Our study provides meta-analytic support to the hypothesis that, in addition to well-known deficits in typical executive functions, impairment in processes related to music perception/reproduction and language semantics may be involved in the pathophysiology of adult ADHD.
PMCID:5108674
PMID: 27569542
ISSN: 1873-2402
CID: 2232372
Neuroanatomy accounts for age-related changes in risk preferences
Grubb, Michael A; Tymula, Agnieszka; Gilaie-Dotan, Sharon; Glimcher, Paul W; Levy, Ifat
Many decisions involve uncertainty, or 'risk', regarding potential outcomes, and substantial empirical evidence has demonstrated that human aging is associated with diminished tolerance for risky rewards. Grey matter volume in a region of right posterior parietal cortex (rPPC) is predictive of preferences for risky rewards in young adults, with less grey matter volume indicating decreased tolerance for risk. That grey matter loss in parietal regions is a part of healthy aging suggests that diminished rPPC grey matter volume may have a role in modulating risk preferences in older adults. Here we report evidence for this hypothesis and show that age-related declines in rPPC grey matter volume better account for age-related changes in risk preferences than does age per se. These results provide a basis for understanding the neural mechanisms that mediate risky choice and a glimpse into the neurodevelopmental dynamics that impact decision-making in an aging population.
PMCID:5159889
PMID: 27959326
ISSN: 2041-1723
CID: 2386262
The Transcription Factor Early B-cell Factor 1 is Critical for Proper Formation of the Cardiac Ventricular Conduction System [Meeting Abstract]
Kim, Eugene; Shekhar, Akshay; Zhang, Jie; Liu, Fang-Yu; Young, Wilson; Fishman, Glenn I
ISI:000390591600004
ISSN: 1524-4571
CID: 2411402
Dendritic Release of Neurotransmitters
Ludwig, Mike; Apps, David; Menzies, John; Patel, Jyoti C; Rice, Margaret E
Release of neuroactive substances by exocytosis from dendrites is surprisingly widespread and is not confined to a particular class of transmitters: it occurs in multiple brain regions, and includes a range of neuropeptides, classical neurotransmitters, and signaling molecules, such as nitric oxide, carbon monoxide, ATP, and arachidonic acid. This review is focused on hypothalamic neuroendocrine cells that release vasopressin and oxytocin and midbrain neurons that release dopamine. For these two model systems, the stimuli, mechanisms, and physiological functions of dendritic release have been explored in greater detail than is yet available for other neurons and neuroactive substances. (c) 2017 American Physiological Society. Compr Physiol 7:235-252, 2017.
PMCID:5381730
PMID: 28135005
ISSN: 2040-4603
CID: 2424002
Abnormalities in Diffusional Kurtosis Metrics Related to Head Impact Exposure in a Season of High School Varsity Football
Davenport, Elizabeth M; Apkarian, Kalyna; Whitlow, Christopher T; Urban, Jillian E; Jensen, Jens H; Szuch, Eliza; Espeland, Mark A; Jung, Youngkyoo; Rosenbaum, Daryl A; Gioia, Gerard A; Powers, Alexander K; Stitzel, Joel D; Maldjian, Joseph A
The purpose of this study was to determine whether the effects of cumulative head impacts during a season of high school football produce changes in diffusional kurtosis imaging (DKI) metrics in the absence of clinically diagnosed concussion. Subjects were recruited from a high school football team and were outfitted with the Head Impact Telemetry System (HITS) during all practices and games. Biomechanical head impact exposure metrics were calculated, including: total impacts, summed acceleration, and Risk Weighted Cumulative Exposure (RWE). Twenty-four players completed pre- and post-season magnetic resonance imaging, including DKI; players who experienced clinical concussion were excluded. Fourteen subjects completed pre- and post-season Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT). DKI-derived metrics included mean kurtosis (MK), axial kurtosis (K axial), and radial kurtosis (K radial), and white matter modeling (WMM) parameters included axonal water fraction, tortuosity of the extra-axonal space, extra-axonal diffusivity (De axial and radial), and intra-axonal diffusivity (Da). These metrics were used to determine the total number of abnormal voxels, defined as 2 standard deviations above or below the group mean. Linear regression analysis revealed a statistically significant relationship between RWE combined probability (RWECP) and MK. Secondary analysis of other DKI-derived and WMM metrics demonstrated statistically significant linear relationships with RWECP after covariate adjustment. These results were compared with the results of DTI-derived metrics from the same imaging sessions in this exact same cohort. Several of the DKI-derived scalars (Da, MK, K axial, and K radial) explained more variance, compared with RWECP, suggesting that DKI may be more sensitive to subconcussive head impacts. No significant relationships between DKI-derived metrics and ImPACT measures were found. It is important to note that the pathological implications of these metrics are not well understood. In summary, we demonstrate a single season of high school football can produce DKI measurable changes in the absence of clinically diagnosed concussion.
PMCID:5124736
PMID: 27042763
ISSN: 1557-9042
CID: 4452202
Transcription factor ETV1 is essential for rapid conduction in the heart
Shekhar, Akshay; Lin, Xianming; Liu, Fang-Yu; Zhang, Jie; Mo, Huan; Bastarache, Lisa; Denny, Joshua C; Cox, Nancy J; Delmar, Mario; Roden, Dan M; Fishman, Glenn I; Park, David S
Rapid impulse propagation in the heart is a defining property of pectinated atrial myocardium (PAM) and the ventricular conduction system (VCS) and is essential for maintaining normal cardiac rhythm and optimal cardiac output. Conduction defects in these tissues produce a disproportionate burden of arrhythmic disease and are major predictors of mortality in heart failure patients. Despite the clinical importance, little is known about the gene regulatory network that dictates the fast conduction phenotype. Here, we have used signal transduction and transcriptional profiling screens to identify a genetic pathway that converges on the NRG1-responsive transcription factor ETV1 as a critical regulator of fast conduction physiology for PAM and VCS cardiomyocytes. Etv1 was highly expressed in murine PAM and VCS cardiomyocytes, where it regulates expression of Nkx2-5, Gja5, and Scn5a, key cardiac genes required for rapid conduction. Mice deficient in Etv1 exhibited marked cardiac conduction defects coupled with developmental abnormalities of the VCS. Loss of Etv1 resulted in a complete disruption of the normal sodium current heterogeneity that exists between atrial, VCS, and ventricular myocytes. Lastly, a phenome-wide association study identified a link between ETV1 and bundle branch block and heart block in humans. Together, these results identify ETV1 as a critical factor in determining fast conduction physiology in the heart.
PMCID:5127680
PMID: 27775552
ISSN: 1558-8238
CID: 2378122
Dynamic balance of excitation and inhibition rapidly modulates spike probability and precision in feed-forward hippocampal circuits
Wahlstrom-Helgren, Sarah; Klyachko, Vitaly A
Feed-forward inhibitory (FFI) circuits are important for many information-processing functions. FFI circuit operations critically depend on the balance and timing between the excitatory and inhibitory components, which undergo rapid dynamic changes during neural activity due to short-term plasticity (STP) of both components. How dynamic changes in excitation/inhibition (E/I) balance during spike trains influence FFI circuit operations remains poorly understood. In the current study we examined the role of STP in the FFI circuit functions in the mouse hippocampus. Using a coincidence detection paradigm with simultaneous activation of two Schaffer collateral inputs, we found that the spiking probability in the target CA1 neuron was increased while spike precision concomitantly decreased during high-frequency bursts compared with a single spike. Blocking inhibitory synaptic transmission revealed that dynamics of inhibition predominately modulates the spike precision but not the changes in spiking probability, whereas the latter is modulated by the dynamics of excitation. Further analyses combining whole cell recordings and simulations of the FFI circuit suggested that dynamics of the inhibitory circuit component may influence spiking behavior during bursts by broadening the width of excitatory postsynaptic responses and that the strength of this modulation depends on the basal E/I ratio. We verified these predictions using a mouse model of fragile X syndrome, which has an elevated E/I ratio, and found a strongly reduced modulation of postsynaptic response width during bursts. Our results suggest that changes in the dynamics of excitatory and inhibitory circuit components due to STP play important yet distinct roles in modulating the properties of FFI circuits.
PMCID:5133295
PMID: 27605532
ISSN: 1522-1598
CID: 3090172