Searched for: school:SOM
Department/Unit:Neuroscience Institute
Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body beta-hydroxybutyrate
Sleiman, Sama F; Henry, Jeffrey; Al-Haddad, Rami; El Hayek, Lauretta; Abou Haidar, Edwina; Stringer, Thomas; Ulja, Devyani; Karuppagounder, Saravanan S; Holson, Edward B; Ratan, Rajiv R; Ninan, Ipe; Chao, Moses V
Exercise induces beneficial responses in the brain, which is accompanied by an increase in BDNF, a trophic factor associated with cognitive improvement and the alleviation of depression and anxiety. However, the exact mechanisms whereby physical exercise produces an induction in brain Bdnf gene expression are not well understood. While pharmacological doses of HDAC inhibitors exert positive effects on Bdnf gene transcription, the inhibitors represent small molecules that do not occur in vivo. Here, we report that an endogenous molecule released after exercise is capable of inducing key promoters of the Mus musculus Bdnf gene. The metabolite beta-hydroxybutyrate, which increases after prolonged exercise, induces the activities of Bdnf promoters, particularly promoter I, which is activity-dependent. We have discovered that the action of beta-hydroxybutyrate is specifically upon HDAC2 and HDAC3, which act upon selective Bdnf promoters. Moreover, the effects upon hippocampal Bdnf expression were observed after direct ventricular application of beta-hydroxybutyrate. Electrophysiological measurements indicate that beta-hydroxybutyrate causes an increase in neurotransmitter release, which is dependent upon the TrkB receptor. These results reveal an endogenous mechanism to explain how physical exercise leads to the induction of BDNF.
PMCID:4915811
PMID: 27253067
ISSN: 2050-084x
CID: 2125162
Neural Representation of Odor-Guided Behavior in the Rat Olfactory Thalamus
Courtiol, Emmanuelle; Wilson, Donald A
The mediodorsal thalamus (MDT) is a higher-order corticocortical thalamic nucleus involved in cognition and memory. However, anatomically, the MDT is also the primary site of olfactory representation in the thalamus, receiving strong inputs from olfactory cortex and having reciprocal connections with orbitofrontal cortex (OFC). Nonetheless, its role in olfaction remains unclear. Here, we recorded single units in the MDT, as well as local field potentials in the MDT, piriform cortex (PCX), and OFC in rats performing a two-alternative odor discrimination task. We show that subsets of MDT units display odorant selectivity during sampling, as well as encoding of spatio-motor aspects of the task. Furthermore, the olfactory trans-thalamic network rapidly switches functional connectivity between MDT and cortical areas depending on current task demands, with, for example, MDT-PCX coupling enhanced during odor sampling and MDT-OFC coupling enhanced during the decision/goal approach compared with baseline and presampling. These results demonstrate MDT representation of diverse sensorimotor components of an olfactory task. SIGNIFICANCE STATEMENT: The mediodorsal thalamus (MDT) is the major olfactory thalamic nucleus and links the olfactory archicortex with the prefrontal neocortex. The MDT is well known to be involved in higher-order cognitive and memory functions, but its role in olfaction is poorly understood. Here, using single-unit and local field potential analyses, we explored MDT function during an odor-guided decision task in rats. We describe MDT odor and multisensory coding and demonstrate behavior-dependent functional connectivity within the MDT/sensory cortex/prefrontal cortex network. Our results suggest a rich representation of olfactory and other information within MDT required to perform this odor-guided task. Our work opens a new model system for understanding MDT function and exploring the important role of MDT in cortical-cortical communication.
PMID: 27251617
ISSN: 1529-2401
CID: 2124872
Flexible Valuations for Consumer Goods as Measured by the Becker-DeGroot-Marschak Mechanism
Tymula, Agnieszka; Woelbert, Eva; Glimcher, Paul
Economists, psychologists, and neuroscientists have long been interested in methods that elicit individuals' true valuations of goods. In this paper, we take 1 of the most popular of such mechanisms, the Becker-DeGroot-Marschak (BDM) procedure, and study the nature of the dependence of the valuations obtained using the BDM procedure on the distribution of prices presented to subjects when the method is implemented. In a within-subject design with products with a high market value, we show that this effect of price distribution occurs quite frequently, significantly impacts reported valuations, and is unlikely to be caused by misconceptions about the BDM procedure. This effect is largest when pricing distributions show a large peak close to an individual's average valuation of the good. A simple nonincentive-compatible subjective rating of the desirability of goods can be used to predict the likelihood that pricing distributions will influence BDM valuations; valuations for goods that subjects report to most want to purchase are most likely to be influenced by distributional structure. Our results challenge some of the dominant theoretical models of how BDM-like valuation procedures relate to standard notions of utility and shed light on how to interpret the data obtained using the BDM method.
ISI:000381270200001
ISSN: 2151-318x
CID: 2754892
Plasticity of sarcolemmal KATP channel surface expression during ischemia and ischemic preconditioning
Yang, Hua-Qian; Foster, Monique N; Jana, Kundan; Ho, Joanne; Rindler, Michael J; Coetzee, William A
AIMS: Myocardial ischemia remains the prime cause of morbidity and mortality in the United States. Ischemic preconditioning (IPC) is a powerful form of endogenous protection against myocardial infarction. We studied alterations in KATPchannels surface density as a potential mechanism of IPC's protection. METHODS AND RESULTS: Using cardiac-specific knockout of Kir6.2 subunits, we demonstrate an essential role for sarcolemmal KATPchannels in the infarct-limiting effect of IPC in the mouse heart. With biochemical membrane fractionation, we demonstrated that sarcolemmal KATPchannel subunits are distributed both to the sarcolemma and intracellular endosomal compartments. Global ischemia causes a loss of sarcolemmal KATPchannel subunit distribution and internalization to endosomal compartments. Ischemia-induced internalization of KATPchannels was prevented by CaMKII inhibition. KATPchannel subcellular redistribution was also observed with immunohistochemistry. Ischemic preconditioning prior to the index ischemia reduces not only the infarct size, but also prevents KATPchannel internalization. Furthermore, not only did adenosine mimic IPC by preventing infarct size, but it also prevented ischemia-induced KATPchannel internalization via a PKC-mediated pathway. We show that preventing endocytosis with dynasore reduces both KATPchannel internalization and strongly mitigates infarct development. CONCLUSIONS: Our data demonstrate that plasticity of KATPchannel surface expression must be considered as a potentially important mechanism of the protective effects of IPC and adenosine.
PMCID:4935516
PMID: 27037371
ISSN: 1522-1539
CID: 2059432
Properties of pattern and component direction-selective cells in area MT of the macaque
Wang, Helena X; Movshon, J Anthony
Neurons in area MT/V5 of the macaque visual cortex encode visual motion. Some cells are selective for the motion of oriented features (component direction-selective, CDS); others respond to the true direction of complex patterns (pattern-direction selective, PDS). There is a continuum of selectivity in MT, with CDS cells at one extreme and PDS cells at the other; we compute a pattern index that captures this variation. It is unknown how a neuron's pattern index is related to its other tuning characteristics. We therefore analyzed the responses of 792 MT cells recorded in the course of other experiments from opiate-anesthetized macaque monkeys, as a function of the direction, spatial frequency, drift rate, size, and contrast of sinusoidal gratings and of the direction and speed of random-dot textures. We also compared MT responses to those of 718 V1 cells. As expected, MT cells with higher pattern index tended to have stronger direction selectivity and broader direction tuning to gratings, and they responded better to plaids than to gratings. Strongly PDS cells also tended to have smaller receptive fields and stronger surround suppression. Interestingly, they also responded preferentially to higher drift rates and higher speeds of moving dots. The spatial frequency preferences of PDS cells depended strongly on their preferred temporal frequencies, whereas these preferences were independent in component-selective cells. Pattern direction selectivity is statistically associated with many response properties of MT cells but not strongly associated with any particular property. Pattern-selective signals are thus available in association with most other signals exported by MT.
PMCID:4922598
PMID: 26561603
ISSN: 1522-1598
CID: 2161972
Activation of local inhibitory circuits in the dentate gyrus by adult-born neurons
Drew, Liam J; Kheirbek, Mazen A; Luna, Victor M; Denny, Christine A; Cloidt, Megan A; Wu, Melody V; Jain, Swati; Scharfman, Helen E; Hen, Rene
Robust incorporation of new principal cells into pre-existing circuitry in the adult mammalian brain is unique to the hippocampal dentate gyrus (DG). We asked if adult-born granule cells (GCs) might act to regulate processing within the DG by modulating the substantially more abundant mature GCs. Optogenetic stimulation of a cohort of young adult-born GCs (0 to 7 weeks post-mitosis) revealed that these cells activate local GABAergic interneurons to evoke strong inhibitory input to mature GCs. Natural manipulation of neurogenesis by aging - to decrease it - and housing in an enriched environment - to increase it - strongly affected the levels of inhibition. We also demonstrated that elevating activity in adult-born GCs in awake behaving animals reduced the overall number of mature GCs activated by exploration. These data suggest that inhibitory modulation of mature GCs may be an important function of adult-born hippocampal neurons
PMCID:4867135
PMID: 26662922
ISSN: 1098-1063
CID: 1877832
Brain processing of a configural vs elemental odor mixture in the newborn rabbit
Schneider, Nanette Y; Datiche, Frederique; Wilson, Donald A; Gigot, Vincent; Thomas-Danguin, Thierry; Ferreira, Guillaume; Coureaud, Gerard
Organisms are surrounded throughout life by chemically complex odors. How individuals process an odorant within a mixture or a mixture as a whole is a key question in neuroethology and chemical senses. This question is addressed here by using newborn rabbits, which can be rapidly conditioned to a new stimulus by single association with the mammary pheromone. After conditioning to ethyl maltol (odorant B), pups behaviorally respond to B and an A'B' mixture (68/32 ratio) but not to ethyl isobutyrate (odorant A) or an AB mixture (30/70 ratio). This suggests elemental and configural perception of A'B' and AB, respectively. We then explored the neural substrates underlying the processing of these mixtures with the hypothesis that processing varies according to perception. Pups were pseudoconditioned or conditioned to B on postnatal day 3 before exposure to B, A'B' or AB on day 4. Fos expression was not similar between groups (mainly in the olfactory bulb and posterior piriform cortex) suggesting a differential processing of the stimuli that might reflect either stimulus complexity or conditioning effect. Thus, the ratio of components in A'B' vs AB leads to differential activation of the olfactory system which may contribute to elemental and configural percepts of these mixtures. In addition, together with recent behavioral data, this highlights that configural perception occurs even in relatively immature animals, emphasizing the value of the newborn rabbit for exploration of odor mixture processing from molecules to brain and behavior.
PMID: 25982221
ISSN: 1863-2661
CID: 2124282
The neural circuits of mating and fighting in male mice
Hashikawa, Koichi; Hashikawa, Yoshiko; Falkner, Annegret; Lin, Dayu
Tinbergen proposed that instinctive behaviors can be divided into appetitive and consummatory phases. During mating and aggression, the appetitive phase contains various actions to bring an animal to a social target and the consummatory phase allows stereotyped actions to take place. Here, we summarize recent advances in elucidating the neural circuits underlying the appetitive and consummatory phases of sexual and aggressive behaviors with a focus on male mice. We outline the role of the main olfactory inputs in the initiation of social approach; the engagement of the accessory olfactory system during social investigation, and the role of the hypothalamus and its downstream pathways in orchestrating social behaviors through a suite of motor actions.
PMCID:4921288
PMID: 26849838
ISSN: 1873-6882
CID: 1933242
Ultrasonic neuromodulation
Naor, Omer; Krupa, Steve; Shoham, Shy
Ultrasonic waves can be non-invasively steered and focused into mm-scale regions across the human body and brain, and their application in generating controlled artificial modulation of neuronal activity could therefore potentially have profound implications for neural science and engineering. Ultrasonic neuro-modulation phenomena were experimentally observed and studied for nearly a century, with recent discoveries on direct neural excitation and suppression sparking a new wave of investigations in models ranging from rodents to humans. In this paper we review the physics, engineering and scientific aspects of ultrasonic fields, their control in both space and time, and their effect on neuronal activity, including a survey of both the field's foundational history and of recent findings. We describe key constraints encountered in this field, as well as key engineering systems developed to surmount them. In closing, the state of the art is discussed, with an emphasis on emerging research and clinical directions.
PMID: 27153566
ISSN: 1741-2552
CID: 2515512
Protein homeostasis gene dysregulation in pretangle-bearing nucleus basalis neurons during the progression of Alzheimer's disease
Tiernan, Chelsea T; Ginsberg, Stephen D; Guillozet-Bongaarts, Angela L; Ward, Sarah M; He, Bin; Kanaan, Nicholas M; Mufson, Elliott J; Binder, Lester I; Counts, Scott E
Conformational phosphorylation and cleavage events drive the tau protein from a soluble, monomeric state to a relatively insoluble, polymeric state that precipitates the formation of neurofibrillary tangles (NFTs) in projection neurons in Alzheimer's disease (AD), including the magnocellular perikarya located in the nucleus basalis of Meynert (NBM) complex of the basal forebrain. Whether these structural changes in the tau protein are associated with pathogenic changes at the molecular and cellular level remains undetermined during the onset of AD. Here, we examined alterations in gene expression within individual NBM neurons immunostained for pS422, an early tau phosphorylation event, or dual labeled for pS422 and TauC3, a later stage tau neoepitope, from tissue obtained postmortem from subjects who died with an antemortem clinical diagnosis of no cognitive impairment, mild cognitive impairment, or mild/moderate AD. Specifically, pS422-positive pretangles displayed an upregulation of select gene transcripts subserving protein quality control. On the other hand, late-stage TauC3-positive NFTs exhibited upregulation of messenger RNAs involved in protein degradation but also cell survival. Taken together, these results suggest that molecular pathways regulating protein homeostasis are altered during the evolution of NFT pathology in the NBM. These changes likely contribute to the disruption of protein turnover and neuronal survival of these vulnerable NBM neurons during the progression of AD.
PMCID:4973891
PMID: 27143424
ISSN: 1558-1497
CID: 2100832