Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Neuroscience Institute

Total Results:

13362


Population-Level Representation of a Temporal Sequence Underlying Song Production in the Zebra Finch

Picardo, Michel A; Merel, Josh; Katlowitz, Kalman A; Vallentin, Daniela; Okobi, Daniel E; Benezra, Sam E; Clary, Rachel C; Pnevmatikakis, Eftychios A; Paninski, Liam; Long, Michael A
The zebra finch brain features a set of clearly defined and hierarchically arranged motor nuclei that are selectively responsible for producing singing behavior. One of these regions, a critical forebrain structure called HVC, contains premotor neurons that are active at precise time points during song production. However, the neural representation of this behavior at a population level remains elusive. We used two-photon microscopy to monitor ensemble activity during singing, integrating across multiple trials by adopting a Bayesian inference approach to more precisely estimate burst timing. Additionally, we examined spiking and motor-related synaptic inputs using intracellular recordings during singing. With both experimental approaches, we find that premotor events do not occur preferentially at the onsets or offsets of song syllables or at specific subsyllabic motor landmarks. These results strongly support the notion that HVC projection neurons collectively exhibit a temporal sequence during singing that is uncoupled from ongoing movements.
PMCID:4941616
PMID: 27196976
ISSN: 1097-4199
CID: 2112322

Network Homeostasis and State Dynamics of Neocortical Sleep

Watson, Brendon O; Levenstein, Daniel; Greene, J Palmer; Gelinas, Jennifer N; Buzsaki, Gyorgy
Sleep exerts many effects on mammalian forebrain networks, including homeostatic effects on both synaptic strengths and firing rates. We used large-scale recordings to examine the activity of neurons in the frontal cortex of rats and first observed that the distribution of pyramidal cell firing rates was wide and strongly skewed toward high firing rates. Moreover, neurons from different parts of that distribution were differentially modulated by sleep substates. Periods of nonREM sleep reduced the activity of high firing rate neurons and tended to upregulate firing of slow-firing neurons. By contrast, the effect of REM was to reduce firing rates across the entire rate spectrum. Microarousals, interspersed within nonREM epochs, increased firing rates of slow-firing neurons. The net result of sleep was to homogenize the firing rate distribution. These findings are at variance with current homeostatic models and provide a novel view of sleep in adjusting network excitability.
PMCID:4873379
PMID: 27133462
ISSN: 1097-4199
CID: 2531212

Developmental Ethanol Exposure-induced Sleep fragmentation Predicts Adult Cognitive Impairment

Wilson, D A; Masiello, K; Lewin, M P; Hui, M; Smiley, J F; Saito, M
Developmental ethanol exposure can lead to long-lasting cognitive impairment, hyperactivity, and emotional dysregulation among other problems. In healthy adults, sleep plays an important role in each of these behavioral manifestations. Here we explored circadian rhythms (activity, temperature) and slow-wave sleep in adult mice that had received a single day of ethanol exposure on postnatal day 7 and saline littermate controls. We tested for correlations between slow-wave activity and both contextual fear conditioning and hyperactivity. Developmental ethanol resulted in adult hyperactivity within the home cage compared to controls but did not significantly modify circadian cycles in activity or temperature. It also resulted in reduced and fragmented slow-wave sleep, including reduced slow-wave bout duration and increased slow-wave/fast-wave transitions over 24 hour periods. In the same animals, developmental ethanol exposure also resulted in impaired contextual fear conditioning memory. The impairment in memory was significantly correlated with slow-wave sleep fragmentation. Furthermore, ethanol treated animals did not display a post-training modification in slow-wave sleep which occurred in controls. In contrast to the memory impairment, sleep fragmentation was not correlated with the developmental ethanol-induced hyperactivity. Together these results suggest that disruption of slow-wave sleep and its plasticity are a secondary contributor to a subset of developmental ethanol exposure's long-lasting consequences.
PMCID:4805438
PMID: 26892295
ISSN: 1873-7544
CID: 1949852

Active Learning in Medicine : A Practical Guide

Oh, So Young; Harnik, Victoria; Berger, Kenneth; Carmody, Ellie; Crowe, Ruth; Czeisler, Barry; Dorsainville, Greg; Givi, Babak; Lee, Sabrina; Ng-Zhao, Lisa; Rapkiewicz, Amy; Rindler, Michael; Rosenthal, Pamela; Sippel, Jack; Skolnick, Adam; Tewksbury, Linda; Torres, Jose
[New York] : NYUSOM Digital Press (Institute for Innovations in Medical Education), 2016
ISBN: n/a
CID: 2490602

Oxytocin Enhances Social Recognition by Modulating Cortical Control of Early Olfactory Processing

Oettl, Lars-Lennart; Ravi, Namasivayam; Schneider, Miriam; Scheller, Max F; Schneider, Peggy; Mitre, Mariela; da Silva Gouveia, Miriam; Froemke, Robert C; Chao, Moses V; Young, W Scott; Meyer-Lindenberg, Andreas; Grinevich, Valery; Shusterman, Roman; Kelsch, Wolfgang
Oxytocin promotes social interactions and recognition of conspecifics that rely on olfaction in most species. The circuit mechanisms through which oxytocin modifies olfactory processing are incompletely understood. Here, we observed that optogenetically induced oxytocin release enhanced olfactory exploration and same-sex recognition of adult rats. Consistent with oxytocin's function in the anterior olfactory cortex, particularly in social cue processing, region-selective receptor deletion impaired social recognition but left odor discrimination and recognition intact outside a social context. Oxytocin transiently increased the drive of the anterior olfactory cortex projecting to olfactory bulb interneurons. Cortical top-down recruitment of interneurons dynamically enhanced the inhibitory input to olfactory bulb projection neurons and increased the signal-to-noise of their output. In summary, oxytocin generates states for optimized information extraction in an early cortical top-down network that is required for social interactions with potential implications for sensory processing deficits in autism spectrum disorders.
PMCID:4860033
PMID: 27112498
ISSN: 1097-4199
CID: 2092392

Allosteric Optical Control of a Class B G-Protein-Coupled Receptor

Broichhagen, Johannes; Johnston, Natalie R; von Ohlen, Yorrick; Meyer-Berg, Helena; Jones, Ben J; Bloom, Stephen R; Rutter, Guy A; Trauner, Dirk; Hodson, David J
Allosteric regulation promises to open up new therapeutic avenues by increasing drug specificity at G-protein-coupled receptors (GPCRs). However, drug discovery efforts are at present hampered by an inability to precisely control the allosteric site. Herein, we describe the design, synthesis, and testing of PhotoETP, a light-activated positive allosteric modulator of the glucagon-like peptide-1 receptor (GLP-1R), a class B GPCR involved in the maintenance of glucose homeostasis in humans. PhotoETP potentiates Ca(2+) , cAMP, and insulin responses to glucagon-like peptide-1 and its metabolites following illumination of cells with blue light. PhotoETP thus provides a blueprint for the production of small-molecule class B GPCR allosteric photoswitches, and may represent a useful tool for understanding positive cooperativity at the GLP-1R.
PMCID:5031193
PMID: 27059784
ISSN: 1521-3773
CID: 2484212

Diverging roles for Lrp4 and Wnt signaling in neuromuscular synapse development during evolution

Remedio, Leonor; Gribble, Katherine D; Lee, Jennifer K; Kim, Natalie; Hallock, Peter T; Delestree, Nicolas; Mentis, George Z; Froemke, Robert C; Granato, Michael; Burden, Steven J
Motor axons approach muscles that are prepatterned in the prospective synaptic region. In mice, prepatterning of acetylcholine receptors requires Lrp4, a LDLR family member, and MuSK, a receptor tyrosine kinase. Lrp4 can bind and stimulate MuSK, strongly suggesting that association between Lrp4 and MuSK, independent of additional ligands, initiates prepatterning in mice. In zebrafish, Wnts, which bind the Frizzled (Fz)-like domain in MuSK, are required for prepatterning, suggesting that Wnts may contribute to prepatterning and neuromuscular development in mammals. We show that prepatterning in mice requires Lrp4 but not the MuSK Fz-like domain. In contrast, prepatterning in zebrafish requires the MuSK Fz-like domain but not Lrp4. Despite these differences, neuromuscular synapse formation in zebrafish and mice share similar mechanisms, requiring Lrp4, MuSK, and neuronal Agrin but not the MuSK Fz-like domain or Wnt production from muscle. Our findings demonstrate that evolutionary divergent mechanisms establish muscle prepatterning in zebrafish and mice.
PMCID:4863737
PMID: 27151977
ISSN: 1549-5477
CID: 2106432

ARMS/Kidins220 and Synembryn-B levels regulate NGF-mediated secretion

Lopez-Benito, Saray; Lillo, Concepcion; Hernandez-Hernandez, Angel; Chao, Moses V; Arevalo, Juan C
Proper development of the nervous system requires a temporally and spatially orchestrated set of events including differentiation, synapse formation and neurotransmission. NGF acting through the TrkA neurotrophin receptor regulates many of these events. However, the molecular mechanisms responsible for NGF-regulated secretion are not completely understood. Here, we describe a new signaling pathway involving TrkA, ARMS/Kidins220, Synembryn-B, and Rac1 in NGF-mediated secretion in PC12 cells. Whereas overexpression of ARMS/Kidins220 blocked NGF-mediated secretion, without affecting basal secretion, a decrease in ARMS/Kidins220 resulted in potentiation. Similar effects were observed with Synembryn-B, a protein that interacts directly with ARMS/Kidins220. Downstream of ARMS/Kidins220 and Synembryn-B are Galphaq and Trio proteins, which modulate the activity of Rac1 in response to NGF. Expression of a dominant negative of Rac1 rescued the secretion defects of cells overexpressing ARMS/Kidins220 or Synembryn-B. Thus this neurotrophin pathway represents a new mechanism responsible for NGF-regulated secretion.
PMID: 26966186
ISSN: 1477-9137
CID: 2024522

A Mathematical Model of Granule Cell Generation During Mouse Cerebellum Development

Leffler, Shoshana R; Legue, Emilie; Aristizabal, Orlando; Joyner, Alexandra L; Peskin, Charles S; Turnbull, Daniel H
Determining the cellular basis of brain growth is an important problem in developmental neurobiology. In the mammalian brain, the cerebellum is particularly amenable to studies of growth because it contains only a few cell types, including the granule cells, which are the most numerous neuronal subtype. Furthermore, in the mouse cerebellum granule cells are generated from granule cell precursors (gcps) in the external granule layer (EGL), from 1 day before birth until about 2 weeks of age. The complexity of the underlying cellular processes (multiple cell behaviors, three spatial dimensions, time-dependent changes) requires a quantitative framework to be fully understood. In this paper, a differential equation-based model is presented, which can be used to estimate temporal changes in granule cell numbers in the EGL. The model includes the proliferation of gcps and their differentiation into granule cells, as well as the process by which granule cells leave the EGL. Parameters describing these biological processes were derived from fitting the model to histological data. This mathematical model should be useful for understanding altered gcp and granule cell behaviors in mouse mutants with abnormal cerebellar development and cerebellar cancers.
PMCID:4911999
PMID: 27125657
ISSN: 1522-9602
CID: 2092612

Intrinsic Functional Connectivity in Attention-Deficit/Hyperactivity Disorder: A Science in Development

Castellanos, F Xavier; Aoki, Yuta
Functional magnetic resonance imaging (fMRI) without an explicit task, i.e., resting state fMRI, of individuals with Attention-Deficit/Hyperactivity Disorder (ADHD) is growing rapidly. Early studies were unaware of the vulnerability of this method to even minor degrees of head motion, a major concern in the field. Recent efforts are implementing various strategies to address this source of artifact along with a growing set of analytical tools. Availability of the ADHD-200 Consortium dataset, a large-scale multi-site repository, is facilitating increasingly sophisticated approaches. In parallel, investigators are beginning to explicitly test the replicability of published findings. In this narrative review, we sketch out broad, overarching hypotheses being entertained while noting methodological uncertainties. Current hypotheses implicate the interplay of default, cognitive control (frontoparietal) and attention (dorsal, ventral, salience) networks in ADHD; functional connectivities of reward-related and amygdala-related circuits are also supported as substrates for dimensional aspects of ADHD. Before these can be further specified and definitively tested, we assert the field must take on the challenge of mapping the "topography" of the analytical space, i.e., determining the sensitivities of results to variations in acquisition, analysis, demographic and phenotypic parameters. Doing so with openly available datasets will provide the needed foundation for delineating typical and atypical developmental trajectories of brain structure and function in neurodevelopmental disorders including ADHD when applied to large-scale multi-site prospective longitudinal studies such as the forthcoming Adolescent Brain Cognitive Development study.
PMCID:5047296
PMID: 27713929
ISSN: 2451-9022
CID: 2274272