Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Neuroscience Institute

Total Results:

13362


Neocortical gamma oscillations in idiopathic generalized epilepsy

Benedek, Krisztina; Berenyi, Antal; Gombkoto, Peter; Piilgaard, Henning; Lauritzen, Martin
OBJECTIVE: Absence seizures in patients with idiopathic generalized epilepsy (IGE) may in part be explained by a decrease in phasic GABAA (type-A gamma-aminobutyric acid) receptor function, but the mechanisms are only partly understood. Here we studied the relation between ictal and interictal spike-wave discharges (SWDs) and electroencephalography (EEG) gamma oscillatory activity (30-60 Hz) in patients with IGE. METHODS: EEG recordings were obtained of 14 children with IGE (mean age, 8.5 +/- 5 years) and 14 age- and sex-matched controls. Time-frequency analysis of each seizure and seizure-free control epochs was performed and cross-coherences of neocortical gamma oscillations were calculated to describe interictal and ictal characteristics of generalized seizures. RESULTS: SWDs were characterized with an abrupt increase of oscillatory activity of 3-4 and 13-60 Hz, peaking at 3-4 and 30-60 Hz, and with a simultaneous decrease in the 8-12 Hz frequency band. The rise in EEG gamma oscillations was short-lasting and decreased before activity declined at lower frequency ranges. Compared to control patients, patients with epilepsy also showed higher interictal values of mean coherence of gamma activity, but this interictal increase was not significant after post hoc analysis. SIGNIFICANCE: Our data support the hypothesis that gamma oscillatory activity increase concomitantly with rises in activity of lower EEG frequencies during absence seizures and that the activity starts to cease earlier than lower EEG frequencies. The data did not support a change in gamma activity preceding the 3-4 Hz SWDs. SWDs are hypothetically generated by the synchronous interaction between the thalamus and the cortex, whereas the production of gamma activity is the result of activity in local inhibitory networks. Thus, the modification of SWD by gamma activity may be understood in terms of the cellular and synaptic mechanisms involved.
PMID: 26996827
ISSN: 1528-1167
CID: 2051942

A Mathematical Model of Granule Cell Generation During Mouse Cerebellum Development

Leffler, Shoshana R; Legue, Emilie; Aristizabal, Orlando; Joyner, Alexandra L; Peskin, Charles S; Turnbull, Daniel H
Determining the cellular basis of brain growth is an important problem in developmental neurobiology. In the mammalian brain, the cerebellum is particularly amenable to studies of growth because it contains only a few cell types, including the granule cells, which are the most numerous neuronal subtype. Furthermore, in the mouse cerebellum granule cells are generated from granule cell precursors (gcps) in the external granule layer (EGL), from 1 day before birth until about 2 weeks of age. The complexity of the underlying cellular processes (multiple cell behaviors, three spatial dimensions, time-dependent changes) requires a quantitative framework to be fully understood. In this paper, a differential equation-based model is presented, which can be used to estimate temporal changes in granule cell numbers in the EGL. The model includes the proliferation of gcps and their differentiation into granule cells, as well as the process by which granule cells leave the EGL. Parameters describing these biological processes were derived from fitting the model to histological data. This mathematical model should be useful for understanding altered gcp and granule cell behaviors in mouse mutants with abnormal cerebellar development and cerebellar cancers.
PMCID:4911999
PMID: 27125657
ISSN: 1522-9602
CID: 2092612

Oxytocin enables maternal behavior by balancing cortical inhibition [Meeting Abstract]

Marlin, B J; Mitre, M; Carcea, L; D'Amour, J A; Schiavo, J; Chao, M V; Froemke, R C
Background: Oxytocin is essential for social interactions and maternal behavior. However, little is known about how oxytocin modulates neural circuits to improve social and maternal outcomes. We describe a synaptic mechanism by which oxytocin enhances signal-to-noise ratio in left primary auditory cortex to improve mouse maternal behavior. Methods: We performed electrophysiological recordings, and used anatomical, optogenetic and behavioral techniques to examine the role of oxytocin in maternal behavior in wild-type C57BL/6 and Oxytocin-IRES-Cre mice. Results: Virgins females, who do not initially retrieve distressed pups, rapidly expressed retrieval behavior after receiving oxytocin under dam and pups co-housing conditions. Retrieval onset was accelerated in 20/36 mice receiving systemic oxytocin and in 5/7 mice receiving optogenetic stimulation (P=0.03, 0.05, respectively; Fisher's two-tailed exact test). To confirm regional sites of action subserving improved maternal behavior, we generated novel antibodies that bind to the mouse oxytocin receptor. Oxytocin receptors were preferentially expressed in the left auditory cortex (19% left cells, 14% right cells, n=21, P=0.001). Finally, we utilitzed in vivo whole-cell recordings to measure spiking/synaptic responses to pup calls. Pup call responses were lateralized, with co-tuned/temporally-precise responses in left auditory cortex of maternally-experienced but not maternal-naive adults. Pairing calls with oxytocin enhanced call-evoked responses in virgin dams by balancing the magnitude/ timing of inhibition with excitation, transitioning the auditory cortex from a virgin-like state to a maternal state. Conclusions: Our study provides a biological basis for the lateralization of vocal processing and emergence of experience-based social learning. These studies inform behavioral therapies involving oxytocin administration
EMBASE:72256862
ISSN: 0006-3223
CID: 2103542

Long-term episodic memory decline is associated with olfactory deficits only in carriers of ApoE-varepsilon4

Olofsson, Jonas K; Josefsson, Maria; Ekstrom, Ingrid; Wilson, Donald; Nyberg, Lars; Nordin, Steven; Adolfsson, Annelie Nordin; Adolfsson, Rolf; Nilsson, Lars-Goran; Larsson, Maria
The varepsilon4 allele of the Apolipoprotein E gene is a genetic risk factor for late-onset dementia of the Alzheimers' type (DAT), which is characterized by loss of both episodic memory and olfactory functions. Little is known about the possible role of varepsilon4 in the association between ongoing episodic memory decline and olfactory deficits in the general population, but such information is relevant in determining the relevance of olfaction as a marker of DAT risk. The present study was based on a large, population-based sample (n=1087, aged 45-90 years, of which 324 were varepsilon4-carriers). Episodic memory change rates were established using data collected every 5 years for a 10-20 year interval leading up to an olfactory assessment using the Scandinavian Odor Identification Test at the last wave of data collection. Participants were classified according to whether or not their episodic memory ability declined more rapidly than the age-typical norm (by >1SD). Our main result is that only in varepsilon4-carriers was episodic memory decline associated with odor identification impairment. In individuals without varepsilon4, odor identification was unrelated to episodic memory decline status. Follow-up analyses indicated that this moderation by varepsilon4 was due to the olfactory nature of the identification test, and that the effect was not caused by 63 individuals with dementia. Our results suggest that the varepsilon4 determines the functional association between ongoing episodic memory decline and olfaction. These findings are consistent with the notion that varepsilon4-carriers with DAT, compared to non-carriers, display a cortical atrophy pattern that is more focused on mediotemporal lobe regions supporting olfactory and episodic memory functions. Olfactory and memory assessments might provide complementary information on mediotemporal atrophy prior to clinical dementia onset, but the varepsilon4 should be considered when using olfactory assessment as an early-stage indicator.
PMID: 26956928
ISSN: 1873-3514
CID: 2024322

Bone marrow derived cells populate post-ablation scar tissue and couple to surrounding myocardium [Meeting Abstract]

Mezzano, V; Kessler, N; Mahoney, V M; Morley, G E
Introduction: Post-ablation scarring is used as a method to uncouple and/or silence pro-arrhythmic circuits. It has been previously suggested that circulating bone marrow derived cells (BMDC) are capable of homing into myocardial infarction scars. It is possible that intercellular junctions form between myocytes and BMDCs and may contribute to ablation failure and recurrence of arrhythmias. Methods: We tested whether BMDCs populate an ablation scars and contribute to functional coupling between the scar and surrounding myocardium. Wild type C57BI/6 mice (n=17) underwent radiation-induced myeloablation and subsequent transplantation with bone marrow progenitors obtained from fetal Cx43 WT (bmcWT) or Cx43 deficient (bmcKO) mice. Results: All donor cells constitutively expressed mCherry protein. Right ventricular ablation was carried out thirty days post transplantation and hearts were studied 30 day post ablation. Cells expressing mCherry and vimentin were observed throughout the scar suggesting donor cells differentiated into a mesenchymal lineage. Coupling between the uninjured myocardium and the scar was assayed with optical mapping. Suction electrode was placed on uninjured myocardium next to the scar to deliver current pulses. Conclusions: Changes in membrane voltage were measured optically at three different sites: Uninjured myocardium, Scar and Remote area (see figure). These data demonstrate that BMDCs can couple to the surrounding myocardium and contribute to the electrophysiological properties of ablation scar tissue. Delivery of modified BMDCs could be used to modifythe post-ablation scar electrophysiological properties. (Figure Presented)
EMBASE:72283867
ISSN: 1556-3871
CID: 2150962

Genetic and Environmental Contributions to Functional Connectivity Architecture of the Human Brain

Yang, Zhi; Zuo, Xi-Nian; McMahon, Katie L; Craddock, R Cameron; Kelly, Clare; de Zubicaray, Greig I; Hickie, Ian; Bandettini, Peter A; Castellanos, F Xavier; Milham, Michael P; Wright, Margaret J
One of the grand challenges faced by neuroscience is to delineate the determinants of interindividual variation in the comprehensive structural and functional connection matrices that comprise the human connectome. At present, this endeavor appears most tractable at the macroanatomic scale, where intrinsic brain activity exhibits robust patterns of synchrony that recapitulate core functional circuits at the individual level. Here, we use a classical twin study design to examine the heritability of intrinsic functional network properties in 101 twin pairs, including network activity (i.e., variance of a network's specific temporal fluctuations) and internetwork coherence (i.e., correlation between networks' specific temporal fluctuations). Five of 7 networks exhibited significantly heritable (23.3-65.2%) network activity, 6 of the 21 internetwork coherences were significantly heritable (25.6-42.0%), and 11 of the 21 internetwork coherences were significantly influenced by common environmental factors (18.0-47.1%). These results suggest that the source of interindividual variation in functional connectome has a modular architecture: individual modules represented by intrinsic connectivity networks are genetic controlled, while environmental factors influence the interplays between the modules. This work further provides network-specific hypotheses for discovery of the specific genetic and environmental factors influencing functional specialization and integration of the human brain.
PMCID:4830303
PMID: 26891986
ISSN: 1460-2199
CID: 2077982

Intrinsic Functional Connectivity in Attention-Deficit/Hyperactivity Disorder: A Science in Development

Castellanos, F Xavier; Aoki, Yuta
Functional magnetic resonance imaging (fMRI) without an explicit task, i.e., resting state fMRI, of individuals with Attention-Deficit/Hyperactivity Disorder (ADHD) is growing rapidly. Early studies were unaware of the vulnerability of this method to even minor degrees of head motion, a major concern in the field. Recent efforts are implementing various strategies to address this source of artifact along with a growing set of analytical tools. Availability of the ADHD-200 Consortium dataset, a large-scale multi-site repository, is facilitating increasingly sophisticated approaches. In parallel, investigators are beginning to explicitly test the replicability of published findings. In this narrative review, we sketch out broad, overarching hypotheses being entertained while noting methodological uncertainties. Current hypotheses implicate the interplay of default, cognitive control (frontoparietal) and attention (dorsal, ventral, salience) networks in ADHD; functional connectivities of reward-related and amygdala-related circuits are also supported as substrates for dimensional aspects of ADHD. Before these can be further specified and definitively tested, we assert the field must take on the challenge of mapping the "topography" of the analytical space, i.e., determining the sensitivities of results to variations in acquisition, analysis, demographic and phenotypic parameters. Doing so with openly available datasets will provide the needed foundation for delineating typical and atypical developmental trajectories of brain structure and function in neurodevelopmental disorders including ADHD when applied to large-scale multi-site prospective longitudinal studies such as the forthcoming Adolescent Brain Cognitive Development study.
PMCID:5047296
PMID: 27713929
ISSN: 2451-9022
CID: 2274272

Neocortex: a lean mean memory storage machine

Mizusaki, Beatriz E P; Stepanyants, Armen; Chklovskii, Dmitri B; Sjöström, P Jesper
PMCID:5271920
PMID: 27116387
ISSN: 1546-1726
CID: 3102512

A Unique Class of Neural Progenitors in the Drosophila Optic Lobe Generates Both Migrating Neurons and Glia

Chen, Zhenqing; Del Valle Rodriguez, Alberto; Li, Xin; Erclik, Ted; Fernandes, Vilaiwan M; Desplan, Claude
How neuronal and glial fates are specified from neural precursor cells is an important question for developmental neurobiologists. We address this question in the Drosophila optic lobe, composed of the lamina, medulla, and lobula complex. We show that two gliogenic regions posterior to the prospective lamina also produce lamina wide-field (Lawf) neurons, which share common progenitors with lamina glia. These progenitors express neither canonical neuroblast nor lamina precursor cell markers. They bifurcate into two sub-lineages in response to Notch signaling, generating lamina glia or Lawf neurons, respectively. The newly born glia and Lawfs then migrate tangentially over substantial distances to reach their target tissue. Thus, Lawf neurogenesis, which includes a common origin with glia, as well as neuronal migration, resembles several aspects of vertebrate neurogenesis.
PMCID:5154769
PMID: 27149843
ISSN: 2211-1247
CID: 2744752

Excitation-Transcription Coupling in Parvalbumin-Positive Interneurons Employs a Novel CaM Kinase-Dependent Pathway Distinct from Excitatory Neurons

Cohen, Samuel M; Ma, Huan; Kuchibhotla, Kishore V; Watson, Brendon O; Buzsaki, Gyorgy; Froemke, Robert C; Tsien, Richard W
Properly functional CNS circuits depend on inhibitory interneurons that in turn rely upon activity-dependent gene expression for morphological development, connectivity, and excitatory-inhibitory coordination. Despite its importance, excitation-transcription coupling in inhibitory interneurons is poorly understood. We report that PV+ interneurons employ a novel CaMK-dependent pathway to trigger CREB phosphorylation and gene expression. As in excitatory neurons, voltage-gated Ca2+ influx through CaV1 channels triggers CaM nuclear translocation via local Ca2+ signaling. However, PV+ interneurons are distinct in that nuclear signaling is mediated by gammaCaMKI, not gammaCaMKII. CREB phosphorylation also proceeds with slow, sigmoid kinetics, rate-limited by paucity of CaMKIV, protecting against saturation of phospho-CREB in the face of higher firing rates and bigger Ca2+ transients. Our findings support the generality of CaM shuttling to drive nuclear CaMK activity, and they are relevant to disease pathophysiology, insofar as dysfunction of PV+ interneurons and molecules underpinning their excitation-transcription coupling both relate to neuropsychiatric disease.
PMCID:4866871
PMID: 27041500
ISSN: 1097-4199
CID: 2065982