Searched for: person:nwb2
Expression of protease activated receptor-2 (PAR-2) in central airways of smokers and non-smokers
Miotto, D; Hollenberg, M D; Bunnett, N W; Papi, A; Braccioni, F; Boschetto, P; Rea, F; Zuin, A; Geppetti, P; Saetta, M; Maestrelli, P; Fabbri, L M; Mapp, C E
BACKGROUND:Protease activated receptor-2 (PAR-2) is a transmembrane G protein coupled receptor preferentially activated by trypsin and tryptase. The protease activated receptors play an important role in most components of injury responses including cell proliferation, migration, matrix remodelling, and inflammation. Cigarette smoking causes an inflammatory process in the central airways, peripheral airways, lung parenchyma, and adventitia of pulmonary arteries. METHODS:To quantify the expression of PAR-2 in the central airways of smokers and non-smokers, surgical specimens obtained from 30 subjects undergoing lung resection for localised pulmonary lesions (24 with a history of cigarette smoking and six non-smoking control subjects) were examined. Central airways were immunostained with an antiserum specific for PAR-2 and PAR-2 expression was quantified using light microscopy and image analysis. RESULTS:PAR-2 expression was found in bronchial smooth muscle, epithelium, glands, and in the endothelium and smooth muscle of bronchial vessels. PAR-2 expression was similar in the central airways of smokers and non-smokers. When smokers were divided according to the presence of symptoms of chronic bronchitis and chronic airflow limitation, PAR-2 expression was increased in smooth muscle (median 3.8 (interquartile range 2.9-5.8) and 1.4 (1.07-3.4) respectively); glands (33.3 (18.2-43.8) and 16.2 (11.5-22.2), respectively); and bronchial vessels (54.2 (48.7-56.8) and 40.0 (36-40.4), respectively) of smokers with symptoms of chronic bronchitis with normal lung function compared with smokers with chronic airflow limitation (COPD), but the increase was statistically significant (p<0.005) only for bronchial vessels. CONCLUSIONS:PAR-2 is present in bronchial smooth muscle, glands, and bronchial vessels of both smokers and non-smokers. An increased expression of PAR-2 was found in bronchial vessels of patients with bronchitis compared with those with COPD.
PMCID:1746249
PMID: 11828045
ISSN: 0040-6376
CID: 4156682
Agonists of proteinase-activated receptor 2 induce cytokine release and activation of nuclear transcription factor kappaB in human dermal microvascular endothelial cells
Shpacovitch, Victoria M; Brzoska, Thomas; Buddenkotte, Jörg; Stroh, Christoph; Sommerhoff, Christian P; Ansel, John C; Schulze-Osthoff, Klaus; Bunnett, Nigel W; Luger, Thomas A; Steinhoff, Martin
Proteinase-activated receptor 2 belongs to a new G protein-coupled receptor subfamily activated by various serine proteases. It has been demonstrated to play a role during inflammation of many tissues including the skin. Proteinase-activated receptor 2 is expressed by endothelial cells and regulates cutaneous inflammation in vivo. The underlying mechanisms of proteinase-activated receptor 2 activation in the skin and the effects on human dermal microvascular endothelial cells, however, are still unknown. Agonists of proteinase-activated receptor 2 such as mast cell tryptase induce widespread inflammation in many organs including the skin. Trypsinogen is generated by endothelial cells during inflammation or tumor growth. Therefore we tested whether human dermal microvascular endothelial cells express functional proteinase-activated receptor 2 and whether agonists of proteinase-activated receptor 2 regulate inflammatory responses in these cells. Calcium mobilization studies revealed that proteinase-activated receptor 2 is functional in human dermal microvascular endothelial cells. Interleukin-6 and interleukin-8 were upregulated as detected by reverse transcription polymerase chain reaction or enzyme-linked immunosorbent assay indicating a role of proteinase-activated receptor 2 in stimulating human dermal microvascular endothelial cells. Electromobility shift assays revealed proteinase-activated-receptor-2-induced activation of nuclear transcription factor kappaB with a maximum after 1 h. In conclusion, agonists of proteinase-activated receptor 2 upregulate interleukin-6 and interleukin-8 expression and release in human dermal microvascular endothelial cells. Thus, proteinase-activated receptor 2 may play an important role in cutaneous inflammation by mediating inflammatory responses on dermal microvascular endothelial cells and activation of nuclear transcription factor kappaB.
PMID: 11841560
ISSN: 0022-202x
CID: 4156692
Protease-activated receptors: the role of cell-surface proteolysis in signalling
Cottrell, Graeme S; Coelho, Anne-Marie; Bunnett, Nigel W
Certain extracellular proteases, derived from the circulation and inflammatory cells, can specifically cleave and trigger protease-activated receptors (PARs), a small, but important, sub-group of the G-protein-coupled receptor super-family. Four PARs have been cloned and they all share the same basic mechanism of activation: proteases cleave at a specific site within the extracellular N-terminus to expose a new N-terminal tethered ligand domain, which binds to and thereby activates the cleaved receptor. Thrombin activates PAR1, PAR3 and PAR4, trypsin activates PAR2 and PAR4, and mast cell tryptase activates PAR2 in this manner. Activated PARs couple to signalling cascades that affect cell shape, secretion, integrin activation, metabolic responses, transcriptional responses and cell motility. PARs are 'single-use' receptors: proteolytic activation is irreversible and the cleaved receptors are degraded in lysosomes. Thus, PARs play important roles in 'emergency situations', such as trauma and inflammation. The availability of selective agonists and antagonists of protease inhibitors and of genetic models has generated evidence to suggests that proteases and their receptors play important roles in coagulation, inflammation, pain, healing and protection. Therefore, selective antagonists or agonists of these receptors may be useful therapeutic agents for the treatment of human diseases.
PMID: 12463169
ISSN: 0071-1365
CID: 4156762
Protease-activated receptors: how proteases signal to cells
Schmidlin, F; Bunnett, N W
Certain proteases from the circulation, mast cells and elsewhere signal directly to cells by cleaving protease-activated receptors (PARs), members of a new subfamily of G-protein-coupled receptor. Cleavage exposes a tethered ligand domain that binds to and activates the cleaved receptors. Advances in the past year have improved our understanding of the molecular mechanisms of this signaling and how it is switched off. It is now recognized that PARs play important roles in 'emergency situations' - such as trauma, when there is generation or release of proteases - and are involved in coagulation, inflammation, pain, healing and protection. Selective antagonists or agonists of these receptors may be useful therapeutic agents for the treatment of human diseases.
PMID: 11757812
ISSN: 1471-4892
CID: 4156672
Agonists of proteinase-activated receptor 2 excite guinea pig ileal myenteric neurons
Linden, D R; Manning, B P; Bunnett, N W; Mawe, G M
The effects of proteinase-activated receptor 2 (PAR2) agonists on the electrical properties of intact guinea pig ileal myenteric neurons were measured with intracellular microelectrodes. Approximately 52% of AH neurons and 41% of S neurons responded to pressure ejection of SLIGRL-NH(2) or trypsin with a prolonged depolarization that was often accompanied by increased excitability. When added to the bathing solution, trypsin caused a concentration-dependent depolarization of responding neurons with an estimated EC(50) value of 87 nM. Collectively, these novel observations indicate that PAR2 excites a proportion of myenteric neurons, which may contribute to dysmotility during intestinal inflammation.
PMID: 11730723
ISSN: 0014-2999
CID: 4156662
Expression and function of proteinase-activated receptor 2 in human bronchial smooth muscle
Schmidlin, F; Amadesi, S; Vidil, R; Trevisani, M; Martinet, N; Caughey, G; Tognetto, M; Cavallesco, G; Mapp, C; Geppetti, P; Bunnett, N W
Trypsin and mast cell tryptase cleave proteinase-activated receptor 2 (PAR2) to induce alterations in contraction of airway smooth muscle that have been implicated in asthma in experimental animals. Although tryptase inhibitors are under development for treatment of asthma, little is known about the localization and function of PAR2 in human airways. We detected PAR2 expression in primary cultures of human airway smooth muscle cells using reverse transcriptase/polymerase chain reaction (RT-PCR) and immunofluorescence. The PAR2 agonists trypsin, tryptase, and an activating peptide (SLIGKV-NH2) stimulated calcium mobilization in these cells. PAR2 agonists strongly desensitized responses to a second challenge of trypsin and SLIGKV-NH2, but not to thrombin, indicating that they activate a receptor distinct from the thrombin receptors. Immunoreactive PAR2 was detected in smooth muscle, epithelium, glands, and endothelium of human bronchi. Trypsin, SLIGKV-NH2, and tryptase stimulated contraction of isolated human bronchi. Contraction was increased by removal of the epithelium and diminished by indomethacin. Thus, PAR2 is expressed by human bronchial smooth muscle where its activation mobilizes intracellular Ca2+ and induces contraction. These results are consistent with the hypothesis that PAR2 agonists, including tryptase, induce bronchoconstriction of human airway by stimulating smooth muscle contraction. PAR2 antagonists may be useful drugs to prevent bronchoconstriction.
PMID: 11673222
ISSN: 1073-449x
CID: 4156652
Pharmacological modulation of skin neuromediators (PAR II)
Bunnett, N
PMID: 11589734
ISSN: 0906-6705
CID: 4159252
Deletion of neutral endopeptidase exacerbates intestinal inflammation induced by Clostridium difficile toxin A
Kirkwood, K S; Bunnett, N W; Maa, J; Castagliolo, I; Liu, B; Gerard, N; Zacks, J; Pothoulakis, C; Grady, E F
Toxin A (TxA) of Clostridium difficile induces acute inflammation of the intestine initiated by release of substance P (SP) and activation of the neurokinin-1 receptor. However, the mechanisms that terminate this response are unknown. We determined whether the SP-degrading enzyme neutral endopeptidase (NEP, EC 3.4.24.11) terminates TxA-induced enteritis. We used both genetic deletion and pharmacological inhibition of NEP to test this hypothesis. In wild-type mice, instillation of TxA (0.5-5 microg) into ileal loops for 3 h dose dependently increased ileal fluid secretion, stimulated granulocyte transmigration determined by myeloperoxidase activity, and caused histological damage characterized by depletion of enterocytes, edema, and neutrophil accumulation. Deletion of NEP reduced the threshold secretory and inflammatory dose of TxA and exacerbated the inflammatory responses by more than twofold. This exacerbated inflammation was prevented by pretreatment with recombinant NEP. Conversely, pretreatment of wild-type mice with the NEP inhibitor phosphoramidon exacerbated enteritis. Thus NEP terminates enteritis induced by C. difficile TxA, underlying the importance of SP degradation in limiting neurogenic inflammation.
PMID: 11447035
ISSN: 0193-1857
CID: 4156632
Agonists of proteinase-activated receptor 1 induce plasma extravasation by a neurogenic mechanism
de Garavilla, L; Vergnolle, N; Young, S H; Ennes, H; Steinhoff, M; Ossovskaya, V S; D'Andrea, M R; Mayer, E A; Wallace, J L; Hollenberg, M D; Andrade-Gordon, P; Bunnett, N W
Thrombin, generated in the circulation during injury, cleaves proteinase-activated receptor 1 (PAR1) to stimulate plasma extravasation and granulocyte infiltration. However, the mechanism of thrombin-induced inflammation in intact tissues is unknown. We hypothesized that thrombin cleaves PAR1 on sensory nerves to release substance P (SP), which interacts with the neurokinin 1 receptor (NK1R) on endothelial cells to cause plasma extravasation. PAR1 was detected in small diameter neurons known to contain SP in rat dorsal root ganglia by immunohistochemistry and in situ hybridization. Thrombin and the PAR1 agonist TFLLR-NH(2) (TF-NH(2)) increased [Ca(2+)](i) >50% of cultured neurons (EC(50)s 24 mu ml(-1) and 1.9 microM, respectively), assessed using Fura-2 AM. The PAR1 agonist completely desensitized responses to thrombin, indicating that thrombin stimulates neurons through PAR1. Injection of TF-NH(2) into the rat paw stimulated a marked and sustained oedema. An NK1R antagonist and ablation of sensory nerves with capsaicin inhibited oedema by 44% at 1 h and completely by 5 h. In wild-type but not PAR1(-/-) mice, TF-NH(2) stimulated Evans blue extravasation in the bladder, oesophagus, stomach, intestine and pancreas by 2 - 8 fold. Extravasation in the bladder, oesophagus and stomach was abolished by an NK1R antagonist. Thus, thrombin cleaves PAR1 on primary spinal afferent neurons to release SP, which activates the NK1R on endothelial cells to stimulate gap formation, extravasation of plasma proteins, and oedema. In intact tissues, neurogenic mechanisms are predominantly responsible for PAR1-induced oedema.
PMCID:1572861
PMID: 11487506
ISSN: 0007-1188
CID: 4156642
Dynamin and Rab5a-dependent trafficking and signaling of the neurokinin 1 receptor
Schmidlin, F; Dery, O; DeFea, K O; Slice, L; Patierno, S; Sternini, C; Grady, E F; Bunnett, N W
Understanding the molecular mechanisms of agonist-induced trafficking of G-protein-coupled receptors is important because of the essential role of trafficking in signal transduction. We examined the role of the GTPases dynamin 1 and Rab5a in substance P (SP)-induced trafficking and signaling of the neurokinin 1 receptor (NK1R), an important mediator of pain, depression, and inflammation, by studying transfected cells and enteric neurons that naturally express the NK1R. In unstimulated cells, the NK1R colocalized with dynamin at the plasma membrane, and Rab5a was detected in endosomes. SP induced translocation of the receptor into endosomes containing Rab5a immediately beneath the plasma membrane and then in a perinuclear location. Expression of the dominant negative mutants dynamin 1 K44E and Rab5aS34N inhibited endocytosis of SP by 45 and 32%, respectively. Dynamin K44E caused membrane retention of the NK1R, whereas Rab5aS34N also impeded the translocation of the receptor from superficially located to perinuclear endosomes. Both dynamin K44E and Rab5aS34N strongly inhibited resensitization of SP-induced Ca(2+) mobilization by 60 and 85%, respectively, but had no effect on NK1R desensitization. Dynamin K44E but not Rab5aS34N markedly reduced SP-induced phosphorylation of extracellular signal regulated kinases 1 and 2. Thus, dynamin mediates the formation of endosomes containing the NK1R, and Rab5a mediates both endosomal formation and their translocation from a superficial to a perinuclear location. Dynamin and Rab5a-dependent trafficking is essential for NK1R resensitization but is not necessary for desensitization of signaling. Dynamin-dependent but not Rab5a-dependent trafficking is required for coupling of the NK1R to the mitogen-activated protein kinase cascade. These processes may regulate the nociceptive, depressive, and proinflammatory effects of SP.
PMID: 11306580
ISSN: 0021-9258
CID: 4156592