Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14036


A comparative study of in vitro air-liquid interface culture models of the human airway epithelium evaluating cellular heterogeneity and gene expression at single cell resolution

Prescott, Rachel A; Pankow, Alec P; de Vries, Maren; Crosse, Keaton M; Patel, Roosheel S; Alu, Mark; Loomis, Cynthia; Torres, Victor; Koralov, Sergei; Ivanova, Ellie; Dittmann, Meike; Rosenberg, Brad R
BACKGROUND:The airway epithelium is composed of diverse cell types with specialized functions that mediate homeostasis and protect against respiratory pathogens. Human airway epithelial (HAE) cultures at air-liquid interface are a physiologically relevant in vitro model of this heterogeneous tissue and have enabled numerous studies of airway disease. HAE cultures are classically derived from primary epithelial cells, the relatively limited passage capacity of which can limit experimental methods and study designs. BCi-NS1.1, a previously described and widely used basal cell line engineered to express hTERT, exhibits extended passage lifespan while retaining the capacity for differentiation to HAE. However, gene expression and innate immune function in BCi-NS1.1-derived versus primary-derived HAE cultures have not been fully characterized. METHODS:BCi-NS1.1-derived HAE cultures (n = 3 independent differentiations) and primary-derived HAE cultures (n = 3 distinct donors) were characterized by immunofluorescence and single cell RNA-Seq (scRNA-Seq). Innate immune functions were evaluated in response to interferon stimulation and to infection with viral and bacterial respiratory pathogens. RESULTS:We confirm at high resolution that BCi-NS1.1- and primary-derived HAE cultures are largely similar in morphology, cell type composition, and overall gene expression patterns. While we observed cell-type specific expression differences of several interferon stimulated genes in BCi-NS1.1-derived HAE cultures, we did not observe significant differences in susceptibility to infection with influenza A virus and Staphylococcus aureus. CONCLUSIONS:Taken together, our results further support BCi-NS1.1-derived HAE cultures as a valuable tool for the study of airway infectious disease.
PMID: 37635251
ISSN: 1465-993x
CID: 5606922

Niche cells regulate primordial germ cell quiescence in response to basement membrane signaling

McIntyre, Daniel C; Nance, Jeremy
Stem cell quiescence, proliferation and differentiation are controlled by interactions with niche cells and a specialized extracellular matrix called basement membrane (BM). Direct interactions with adjacent BM are known to regulate stem cell quiescence; however, it is less clear how niche BM relays signals to stem cells that it does not contact. Here, we examine how niche BM regulates Caenorhabditis elegans primordial germ cells (PGCs). BM regulates PGC quiescence even though PGCs are enwrapped by somatic niche cells and do not contact the BM; this can be demonstrated by depleting laminin, which causes normally quiescent embryonic PGCs to proliferate. We show that following laminin depletion, niche cells relay proliferation-inducing signals from the gonadal BM to PGCs via integrin receptors. Disrupting the BM proteoglycan perlecan blocks PGC proliferation when laminin is depleted, indicating that laminin functions to inhibit a proliferation-inducing signal originating from perlecan. Reducing perlecan levels in fed larvae hampers germline growth, suggesting that BM signals regulate germ cell proliferation under physiological conditions. Our results reveal how BM signals can regulate stem cell quiescence indirectly, by activating niche cell integrin receptors.
PMCID:10445801
PMID: 37497562
ISSN: 1477-9129
CID: 5595232

Tau deficiency inhibits classically activated macrophage polarization and protects against collagen-induced arthritis in mice

Chen, Meng; Fu, Wenyu; Xu, Huiyun; Liu, Chuan-Ju
BACKGROUND:Tau protein serves a pro-inflammatory function in neuroinflammation. However, the role of tau in other inflammatory disorders such as rheumatoid arthritis (RA) is less explored. This study is to investigate the role of endogenous tau and the potential mechanisms in the pathogenesis of inflammatory arthritis. METHODS:We established collagen-induced arthritis (CIA) model in wild-type and Tau-/- mice to compare the clinical score and arthritis incidence. Micro-CT analysis was used to evaluate bone erosion of ankle joints. Histological analysis was performed to assess inflammatory cell infiltration, cartilage damage, and osteoclast activity in the ankle joints. Serum levels of pro-inflammatory cytokines were measured by ELISA. The expression levels of macrophage markers were determined by immunohistochemistry staining and quantitative real-time PCR. RESULTS:Tau expression was upregulated in joints under inflammatory condition. Tau deletion in mice exhibited milder inflammation and protected against the progression of CIA, evidenced by reduced serum levels of pro-inflammatory cytokines and attenuated bone loss, inflammatory cell infiltration, cartilage damage, and osteoclast activity in the ankle joints. Furthermore, tau deficiency led to the inhibition of classically activated type 1 (M1) macrophage polarization in the synovium. CONCLUSION:Tau is a previously unrecognized critical regulator in the pathogenesis of RA and may provide a potential therapeutic target for autoimmune and inflammatory joint diseases.
PMCID:10410869
PMID: 37559125
ISSN: 1478-6362
CID: 5595022

Structural basis of histone H2A lysine 119 deubiquitination by Polycomb repressive deubiquitinase BAP1/ASXL1

Thomas, Jonathan F; Valencia-Sánchez, Marco Igor; Tamburri, Simone; Gloor, Susan L; Rustichelli, Samantha; Godínez-López, Victoria; De Ioannes, Pablo; Lee, Rachel; Abini-Agbomson, Stephen; Gretarsson, Kristjan; Burg, Jonathan M; Hickman, Allison R; Sun, Lu; Gopinath, Saarang; Taylor, Hailey F; Sun, Zu-Wen; Ezell, Ryan J; Vaidya, Anup; Meiners, Matthew J; Cheek, Marcus A; Rice, William J; Svetlov, Vladimir; Nudler, Evgeny; Lu, Chao; Keogh, Michael-Christopher; Pasini, Diego; Armache, Karim-Jean
Histone H2A lysine 119 (H2AK119Ub) is monoubiquitinated by Polycomb repressive complex 1 and deubiquitinated by Polycomb repressive deubiquitinase complex (PR-DUB). PR-DUB cleaves H2AK119Ub to restrict focal H2AK119Ub at Polycomb target sites and to protect active genes from aberrant silencing. The PR-DUB subunits (BAP1 and ASXL1) are among the most frequently mutated epigenetic factors in human cancers. How PR-DUB establishes specificity for H2AK119Ub over other nucleosomal ubiquitination sites and how disease-associated mutations of the enzyme affect activity are unclear. Here, we determine a cryo-EM structure of human BAP1 and the ASXL1 DEUBAD in complex with a H2AK119Ub nucleosome. Our structural, biochemical, and cellular data reveal the molecular interactions of BAP1 and ASXL1 with histones and DNA that are critical for restructuring the nucleosome and thus establishing specificity for H2AK119Ub. These results further provide a molecular explanation for how >50 mutations in BAP1 and ASXL1 found in cancer can dysregulate H2AK119Ub deubiquitination, providing insight into understanding cancer etiology.
PMID: 37556531
ISSN: 2375-2548
CID: 5594932

Cas9-mediated knockout of Ndrg2 enhances the regenerative potential of dendritic cells for wound healing

Henn, Dominic; Zhao, Dehua; Sivaraj, Dharshan; Trotsyuk, Artem; Bonham, Clark Andrew; Fischer, Katharina S; Kehl, Tim; Fehlmann, Tobias; Greco, Autumn H; Kussie, Hudson C; Moortgat Illouz, Sylvia E; Padmanabhan, Jagannath; Barrera, Janos A; Kneser, Ulrich; Lenhof, Hans-Peter; Januszyk, Michael; Levi, Benjamin; Keller, Andreas; Longaker, Michael T; Chen, Kellen; Qi, Lei S; Gurtner, Geoffrey C
Chronic wounds impose a significant healthcare burden to a broad patient population. Cell-based therapies, while having shown benefits for the treatment of chronic wounds, have not yet achieved widespread adoption into clinical practice. We developed a CRISPR/Cas9 approach to precisely edit murine dendritic cells to enhance their therapeutic potential for healing chronic wounds. Using single-cell RNA sequencing of tolerogenic dendritic cells, we identified N-myc downregulated gene 2 (Ndrg2), which marks a specific population of dendritic cell progenitors, as a promising target for CRISPR knockout. Ndrg2-knockout alters the transcriptomic profile of dendritic cells and preserves an immature cell state with a strong pro-angiogenic and regenerative capacity. We then incorporated our CRISPR-based cell engineering within a therapeutic hydrogel for in vivo cell delivery and developed an effective translational approach for dendritic cell-based immunotherapy that accelerated healing of full-thickness wounds in both non-diabetic and diabetic mouse models. These findings could open the door to future clinical trials using safe gene editing in dendritic cells for treating various types of chronic wounds.
PMCID:10406832
PMID: 37550295
ISSN: 2041-1723
CID: 5678222

Proteogenomic analysis of chemo-refractory high-grade serous ovarian cancer

Chowdhury, Shrabanti; Kennedy, Jacob J; Ivey, Richard G; Murillo, Oscar D; Hosseini, Noshad; Song, Xiaoyu; Petralia, Francesca; Calinawan, Anna; Savage, Sara R; Berry, Anna B; Reva, Boris; Ozbek, Umut; Krek, Azra; Ma, Weiping; da Veiga Leprevost, Felipe; Ji, Jiayi; Yoo, Seungyeul; Lin, Chenwei; Voytovich, Uliana J; Huang, Yajue; Lee, Sun-Hee; Bergan, Lindsay; Lorentzen, Travis D; Mesri, Mehdi; Rodriguez, Henry; Hoofnagle, Andrew N; Herbert, Zachary T; Nesvizhskii, Alexey I; Zhang, Bing; Whiteaker, Jeffrey R; Fenyo, David; McKerrow, Wilson; Wang, Joshua; Schürer, Stephan C; Stathias, Vasileios; Chen, X Steven; Barcellos-Hoff, Mary Helen; Starr, Timothy K; Winterhoff, Boris J; Nelson, Andrew C; Mok, Samuel C; Kaufmann, Scott H; Drescher, Charles; Cieslik, Marcin; Wang, Pei; Birrer, Michael J; Paulovich, Amanda G
To improve the understanding of chemo-refractory high-grade serous ovarian cancers (HGSOCs), we characterized the proteogenomic landscape of 242 (refractory and sensitive) HGSOCs, representing one discovery and two validation cohorts across two biospecimen types (formalin-fixed paraffin-embedded and frozen). We identified a 64-protein signature that predicts with high specificity a subset of HGSOCs refractory to initial platinum-based therapy and is validated in two independent patient cohorts. We detected significant association between lack of Ch17 loss of heterozygosity (LOH) and chemo-refractoriness. Based on pathway protein expression, we identified 5 clusters of HGSOC, which validated across two independent patient cohorts and patient-derived xenograft (PDX) models. These clusters may represent different mechanisms of refractoriness and implicate putative therapeutic vulnerabilities.
PMCID:10414761
PMID: 37541199
ISSN: 1097-4172
CID: 5594782

MAVS signaling is required for preventing persistent chikungunya heart infection and chronic vascular tissue inflammation

Noval, Maria G; Spector, Sophie N; Bartnicki, Eric; Izzo, Franco; Narula, Navneet; Yeung, Stephen T; Damani-Yokota, Payal; Dewan, M Zahidunnabi; Mezzano, Valeria; Rodriguez-Rodriguez, Bruno A; Loomis, Cynthia; Khanna, Kamal M; Stapleford, Kenneth A
Chikungunya virus (CHIKV) infection has been associated with severe cardiac manifestations, yet, how CHIKV infection leads to heart disease remains unknown. Here, we leveraged both mouse models and human primary cardiac cells to define the mechanisms of CHIKV heart infection. Using an immunocompetent mouse model of CHIKV infection as well as human primary cardiac cells, we demonstrate that CHIKV directly infects and actively replicates in cardiac fibroblasts. In immunocompetent mice, CHIKV is cleared from cardiac tissue without significant damage through the induction of a local type I interferon response from both infected and non-infected cardiac cells. Using mice deficient in major innate immunity signaling components, we found that signaling through the mitochondrial antiviral-signaling protein (MAVS) is required for viral clearance from the heart. In the absence of MAVS signaling, persistent infection leads to focal myocarditis and vasculitis of the large vessels attached to the base of the heart. Large vessel vasculitis was observed for up to 60 days post infection, suggesting CHIKV can lead to vascular inflammation and potential long-lasting cardiovascular complications. This study provides a model of CHIKV cardiac infection and mechanistic insight into CHIKV-induced heart disease, underscoring the importance of monitoring cardiac function in patients with CHIKV infections.
PMCID:10400619
PMID: 37537212
ISSN: 2041-1723
CID: 5594762

Cell specificity of Manganese-enhanced MRI signal in the cerebellum

Rallapalli, Harikrishna; Bayin, N Sumru; Goldman, Hannah; Maric, Dragan; Nieman, Brian J; Koretsky, Alan P; Joyner, Alexandra L; Turnbull, Daniel H
Magnetic Resonance Imaging (MRI) resolution continues to improve, making it important to understand the cellular basis for different MRI contrast mechanisms. Manganese-enhanced MRI (MEMRI) produces layer-specific contrast throughout the brain enabling in vivo visualization of cellular cytoarchitecture, particularly in the cerebellum. Due to the unique geometry of the cerebellum, especially near the midline, 2D MEMRI images can be acquired from a relatively thick slice by averaging through areas of uniform morphology and cytoarchitecture to produce very high-resolution visualization of sagittal planes. In such images, MEMRI hyperintensity is uniform in thickness throughout the anterior-posterior axis of sagittal sections and is centrally located in the cerebellar cortex. These signal features suggested that the Purkinje cell layer, which houses the cell bodies of the Purkinje cells and the Bergmann glia, is the source of hyperintensity. Despite this circumstantial evidence, the cellular source of MRI contrast has been difficult to define. In this study, we quantified the effects of selective ablation of Purkinje cells or Bergmann glia on cerebellar MEMRI signal to determine whether signal could be assigned to one cell type. We found that the Purkinje cells, not the Bergmann glia, are the primary of source of the enhancement in the Purkinje cell layer. This cell-ablation strategy should be useful for determining the cell specificity of other MRI contrast mechanisms.
PMCID:10330770
PMID: 37245561
ISSN: 1095-9572
CID: 5536622

Genetic models for lineage tracing in musculoskeletal development, injury, and healing

Loder, Shawn; Patel, Nicole; Morgani, Sophie; Sambon, Margaux; Leucht, Philipp; Levi, Benjamin
Musculoskeletal development and later post-natal homeostasis are highly dynamic processes, marked by rapid structural and functional changes across very short periods of time. Adult anatomy and physiology are derived from pre-existing cellular and biochemical states. Consequently, these early developmental states guide and predict the future of the system as a whole. Tools have been developed to mark, trace, and follow specific cells and their progeny either from one developmental state to the next or between circumstances of health and disease. There are now many such technologies alongside a library of molecular markers which may be utilized in conjunction to allow for precise development of unique cell 'lineages'. In this review, we first describe the development of the musculoskeletal system beginning as an embryonic germ layer and at each of the key developmental stages that follow. We then discuss these structures in the context of adult tissues during homeostasis, injury, and repair. Special focus is given in each of these sections to the key genes involved which may serve as markers of lineage or later in post-natal tissues. We then finish with a technical assessment of lineage tracing and the techniques and technologies currently used to mark cells, tissues, and structures within the musculoskeletal system.
PMID: 37156345
ISSN: 1873-2763
CID: 5507942

Reply to: Revisiting the intrinsic mycobiome in pancreatic cancer [Letter]

Xu, Fangxi; Saxena, Deepak; Pushalkar, Smruti; Miller, George
PMID: 37532815
ISSN: 1476-4687
CID: 5594552