Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Neuroscience Institute

Total Results:

13462


Comment on "Principles of connectivity among morphologically defined cell types in adult neocortex"

Barth, Alison; Burkhalter, Andreas; Callaway, Edward M; Connors, Barry W; Cauli, Bruno; DeFelipe, Javier; Feldmeyer, Dirk; Freund, Tamas; Kawaguchi, Yasuo; Kisvarday, Zoltan; Kubota, Yoshiyuki; McBain, Chris; Oberlaender, Marcel; Rossier, Jean; Rudy, Bernardo; Staiger, Jochen F; Somogyi, Peter; Tamas, Gabor; Yuste, Rafael
Jiang et al (Research Article, 27 November 2015, aac9462) describe detailed experiments that substantially add to the knowledge of cortical microcircuitry and are unique in the number of connections reported and the quality of interneuron reconstruction. The work appeals to experts and laypersons because of the notion that it unveils new principles and provides a complete description of cortical circuits. We provide a counterbalance to the authors' claims to give those less familiar with the minutiae of cortical circuits a better sense of the contributions and the limitations of this study.
PMID: 27609882
ISSN: 1095-9203
CID: 2238722

Differential timing of granule cell production during cerebellum development underlies generation of the foliation pattern

Legué, Emilie; Gottshall, Jackie L; Jaumouillé, Edouard; Roselló-Díez, Alberto; Shi, Wei; Barraza, Luis Humberto; Washington, Senna; Grant, Rachel L; Joyner, Alexandra L
BACKGROUND:The mouse cerebellum (Cb) has a remarkably complex foliated three-dimensional (3D) structure, but a stereotypical cytoarchitecture and local circuitry. Little is known of the cellular behaviors and genes that function during development to determine the foliation pattern. In the anteroposterior axis the mammalian cerebellum is divided by lobules with distinct sizes, and the foliation pattern differs along the mediolateral axis defining a medial vermis and two lateral hemispheres. In the vermis, lobules are further grouped into four anteroposterior zones (anterior, central, posterior and nodular zones) based on genetic criteria, and each has distinct lobules. Since each cerebellar afferent group projects to particular lobules and zones, it is critical to understand how the 3D structure of the Cb is acquired. During cerebellar development, the production of granule cells (gcs), the most numerous cell type in the brain, is required for foliation. We hypothesized that the timing of gc accumulation is different in the four vermal zones during development and contributes to the distinct lobule morphologies. METHODS AND RESULTS:In order to test this idea, we used genetic inducible fate mapping to quantify accumulation of gcs in each lobule during the first two postnatal weeks in mice. The timing of gc production was found to be particular to each lobule, and delayed in the central zone lobules relative to the other zones. Quantification of gc proliferation and differentiation at three time-points in lobules representing different zones, revealed the delay involves a later onset of maximum differentiation and prolonged proliferation of gc progenitors in the central zone. Similar experiments in Engrailed mutants (En1 (-/+) ;En2 (-/-) ), which have a smaller Cb and altered foliation pattern preferentially outside the central zone, showed that gc production, proliferation and differentiation are altered such that the differences between zones are attenuated compared to wild-type mice. CONCLUSIONS:Our results reveal that gc production is differentially regulated in each zone of the cerebellar vermis, and our mutant analysis indicates that the dynamics of gc production plays a role in determining the 3D structure of the Cb.
PMCID:5017010
PMID: 27609139
ISSN: 1749-8104
CID: 3090292

Intercellular Networks Underlying Developmental Decisions

Chao, Moses V
In this issue of Neuron, Yuzwa et al. (2016) identify secreted factors that influence the cell fates of embryonic neural progenitor cells. Surprisingly, the major contributors are trophic factors from the GDNF family and a cytokine, interferon-gamma. Advanced analysis of proteomic and transcriptome data discovered ligand receptors that influence cell-cell communication.
PMID: 27608755
ISSN: 1097-4199
CID: 2246502

Parallel Pbx-Dependent Pathways Govern the Coalescence and Fate of Motor Columns

Hanley, Olivia; Zewdu, Rediet; Cohen, Lisa J; Jung, Heekyung; Lacombe, Julie; Philippidou, Polyxeni; Lee, David H; Selleri, Licia; Dasen, Jeremy S
The clustering of neurons sharing similar functional properties and connectivity is a common organizational feature of vertebrate nervous systems. Within motor networks, spinal motor neurons (MNs) segregate into longitudinally arrayed subtypes, establishing a central somatotopic map of peripheral target innervation. MN organization and connectivity relies on Hox transcription factors expressed along the rostrocaudal axis; however, the developmental mechanisms governing the orderly arrangement of MNs are largely unknown. We show that Pbx genes, which encode Hox cofactors, are essential for the segregation and clustering of neurons within motor columns. In the absence of Pbx1 and Pbx3 function, Hox-dependent programs are lost and the remaining MN subtypes are unclustered and disordered. Identification of Pbx gene targets revealed an unexpected and apparently Hox-independent role in defining molecular features of dorsally projecting medial motor column (MMC) neurons. These results indicate Pbx genes act in parallel genetic pathways to orchestrate neuronal subtype differentiation, connectivity, and organization.
PMCID:5017921
PMID: 27568519
ISSN: 1097-4199
CID: 2232352

A Synthesis of (+/-)-Aplydactone

Meier, Robin; Trauner, Dirk
Aplydactone is an unusual brominated sesquiterpenoid isolated from the sea hare Aplysia dactylomela. Its highly strained skeleton contains two four- and three six-membered rings and features three adjacent quaternary carbon atoms. Although it is most likely of photochemical origin, attempts to generate it from a chamigrane precursor have failed thus far. In this work, we present a total synthesis of aplydactone that relies on two photochemical key steps that are not biomimetic but highly effective in establishing the two cyclobutane rings. Our synthesis also features an unusual Barbier-type cyclization and culminates in new radical conditions to install the sterically hindered secondary bromide of the natural product.
PMID: 27356849
ISSN: 1521-3773
CID: 2484202

Time-dependent reversal of synaptic plasticity induced by physiological concentrations of oligomeric Abeta42: an early index of Alzheimer's disease

Koppensteiner, Peter; Trinchese, Fabrizio; Fa, Mauro; Puzzo, Daniela; Gulisano, Walter; Yan, Shijun; Poussin, Arthur; Liu, Shumin; Orozco, Ian; Dale, Elena; Teich, Andrew F; Palmeri, Agostino; Ninan, Ipe; Boehm, Stefan; Arancio, Ottavio
The oligomeric amyloid-beta (Abeta) peptide is thought to contribute to the subtle amnesic changes in Alzheimer's disease (AD) by causing synaptic dysfunction. Here, we examined the time course of synaptic changes in mouse hippocampal neurons following exposure to Abeta42 at picomolar concentrations, mimicking its physiological levels in the brain. We found opposite effects of the peptide with short exposures in the range of minutes enhancing synaptic plasticity, and longer exposures lasting several hours reducing it. The plasticity reduction was concomitant with an increase in the basal frequency of spontaneous neurotransmitter release, a higher basal number of functional presynaptic release sites, and a redistribution of synaptic proteins including the vesicle-associated proteins synapsin I, synaptophysin, and the post-synaptic glutamate receptor I. These synaptic alterations were mediated by cytoskeletal changes involving actin polymerization and p38 mitogen-activated protein kinase. These in vitro findings were confirmed in vivo with short hippocampal infusions of picomolar Abeta enhancing contextual memory and prolonged infusions impairing it. Our findings provide a model for initiation of synaptic dysfunction whereby exposure to physiologic levels of Abeta for a prolonged period of time causes microstructural changes at the synapse which result in increased transmitter release, failure of synaptic plasticity, and memory loss.
PMCID:5007504
PMID: 27581852
ISSN: 2045-2322
CID: 2232042

Oculomatic: High speed, reliable, and accurate open-source eye tracking for humans and non-human primates

Zimmermann, Jan; Vazquez, Yuriria; Glimcher, Paul W; Pesaran, Bijan; Louie, Kenway
BACKGROUND: Video-based noninvasive eye trackers are an extremely useful tool for many areas of research. Many open-source eye trackers are available but current open-source systems are not designed to track eye movements with the temporal resolution required to investigate the mechanisms of oculomotor behavior. Commercial systems are available but employ closed source hardware and software and are relatively expensive, limiting wide-spread use. NEW METHOD: Here we present Oculomatic, an open-source software and modular hardware solution to eye tracking for use in humans and non-human primates. RESULTS: Oculomatic features high temporal resolution (up to 600Hz), real-time eye tracking with high spatial accuracy (<0.5 degrees ), and low system latency ( approximately 1.8ms, 0.32ms STD) at a relatively low-cost. COMPARISON WITH EXISTING METHOD(S): Oculomatic compares favorably to our existing scleral search-coil system while being fully non invasive. CONCLUSIONS: We propose that Oculomatic can support a wide range of research into the properties and neural mechanisms of oculomotor behavior.
PMCID:4981506
PMID: 27339782
ISSN: 1872-678x
CID: 2250172

Erratum to: The continuous performance test (rCPT) for mice: a novel operant touchscreen test of attentional function [Correction]

Kim, Chi Hun; Hvoslef-Eide, Martha; Nilsson, Simon R O; Johnson, Mark R; Herbert, Bronwen R; Robbins, Trevor W; Saksida, Lisa M; Bussey, Timothy J; Mar, Adam C
PMID: 27506996
ISSN: 1432-2072
CID: 2572932

The enigmatic mossy cell of the dentate gyrus

Scharfman, Helen E
Mossy cells comprise a large fraction of the cells in the hippocampal dentate gyrus, suggesting that their function in this region is important. They are vulnerable to ischaemia, traumatic brain injury and seizures, and their loss could contribute to dentate gyrus dysfunction in such conditions. Mossy cell function has been unclear because these cells innervate both glutamatergic and GABAergic neurons within the dentate gyrus, contributing to a complex circuitry. It has also been difficult to directly and selectively manipulate mossy cells to study their function. In light of the new data generated using methods to preferentially eliminate or activate mossy cells in mice, it is timely to ask whether mossy cells have become any less enigmatic than they were in the past.
PMCID:5369357
PMID: 27466143
ISSN: 1471-0048
CID: 2191602

Epilepsy-related cytoarchitectonic abnormalities along white matter pathways

Glenn, G Russell; Jensen, Jens H; Helpern, Joseph A; Spampinato, Maria V; Kuzniecky, Ruben; Keller, Simon S; Bonilha, Leonardo
OBJECTIVE: Temporal lobe epilepsy (TLE) is one of the most common forms of epilepsy. Unfortunately, the clinical outcomes of TLE cannot be determined based only on current diagnostic modalities. A better understanding of white matter (WM) connectivity changes in TLE may aid the identification of network abnormalities associated with TLE and the phenotypic characterisation of the disease. METHODS: We implemented a novel approach for characterising microstructural changes along WM pathways using diffusional kurtosis imaging (DKI). Along-the-tract measures were compared for 32 subjects with left TLE and 36 age-matched and gender-matched controls along the left and right fimbria-fornix (FF), parahippocampal WM bundle (PWMB), arcuate fasciculus (AF), inferior longitudinal fasciculus (ILF), uncinate fasciculus (UF) and cingulum bundle (CB). Limbic pathways were investigated in relation to seizure burden and control with antiepileptic drugs. RESULTS: By evaluating measures along each tract, it was possible to identify abnormalities localised to specific tract subregions. Compared with healthy controls, subjects with TLE demonstrated pathological changes in circumscribed regions of the FF, PWMB, UF, AF and ILF. Several of these abnormalities were detected only by kurtosis-based and not by diffusivity-based measures. Structural WM changes correlated with seizure burden in the bilateral PWMB and cingulum. CONCLUSIONS: DKI improves the characterisation of network abnormalities associated with TLE by revealing connectivity abnormalities that are not disclosed by other modalities. Since TLE is a neuronal network disorder, DKI may be well suited to fully assess structural network abnormalities related to epilepsy and thus serve as a tool for phenotypic characterisation of epilepsy.
PMID: 27076491
ISSN: 1468-330x
CID: 2275342