Searched for: school:SOM
Department/Unit:Neuroscience Institute
Progression from respiratory dysfunction to failure in late-onset Pompe disease
Berger, Kenneth I; Chan, Yinny; Rom, William N; Oppenheimer, Beno W; Goldring, Roberta M
To identify determinants of respiratory disease progression in late-onset Pompe disease (LOPD), we studied relationships between pulmonary function, respiratory muscle strength, gas exchange, and respiratory control. Longitudinal evaluation of 22 LOPD patients (mean age 38 years) was performed at 6-month intervals for 6-24 months. Measurements included vital capacity (VC), maximum inspiratory pressure (MIP), maximum expiratory pressure (MEP), tidal volume (VT), dead space (VD), and ventilatory response to CO2. Although reduction in VC correlated with MIP and MEP (p < 0.0001), some patients had normal VC despite reduced MIP and MEP (5 [23%] and 9 [41%] patients, respectively). Daytime hypercapnia was associated with reduced VC (<60% predicted) and MIP (<40% predicted). Moreover, chronic hypercapnia was associated with elevated VD/VT (>/=0.44) due to falling VT ( approximately 300 ml), compatible with reduced efficiency of CO2 clearance. The presence of hypercapnia and/or ventilatory support was associated with reduced ventilatory responsiveness to CO2 (=0.7 l/min/mmHg). We conclude that daytime hypercapnia, an indicator of chronic respiratory failure, is tightly linked to the degree of respiratory muscle weakness and severity of pulmonary dysfunction in LOPD patients. Reductions in CO2 clearance efficiency and ventilatory responsiveness may contribute to the development of chronic daytime hypercapnia.
PMID: 27297666
ISSN: 1873-2364
CID: 2145062
Activation of beta-adrenergic receptors in rat visual cortex expands astrocytic processes and reduces extracellular space volume
Sherpa, Ang Doma; Xiao, Fanrong; Joseph, Neethu; Aoki, Chiye; Hrabetova, Sabina
Brain extracellular space (ECS) is an interconnected channel that allows diffusion-mediated transport of signaling molecules, metabolites, and drugs. We tested the hypothesis that beta-adrenergic receptor (betaAR) activation impacts extracellular diffusion-mediated transport of molecules through alterations in the morphology of astrocytes. Two structural parameters of ECS-volume fraction and tortuosity-govern extracellular diffusion. Volume fraction (alpha) is the volume of ECS relative to the total tissue volume. Tortuosity (lambda) is a measure of the hindrance that molecules experience in the ECS, compared to a free medium. The real-time iontophoretic (RTI) method revealed that treatment of acutely prepared visual cortical slices of adult female rats with a betaAR agonist, DL-isoproterenol (ISO), decreases alpha significantly, from 0.22 +/- 0.03 (mean +/- SD) for controls without agonist to 0.18 +/- 0.03 with ISO, without altering lambda (control: 1.64 +/- 0.04; ISO: 1.63 +/- 0.04). Electron microscopy revealed that the ISO treatment significantly increased the cytoplasmic area of astrocytic distal endings per unit area of neuropil by 54%. These findings show that norepinephrine decreases alpha, in part, through an increase in astrocytic volume following betaAR activation. Norepinephrine is recognized to be released within the brain during the awake state and increase neurons' signal-to-noise ratio through modulation of neurons' biophysical properties. Our findings uncover a new mechanism for noradrenergic modulation of neuronal signals. Through astrocytic activation leading to a reduction of alpha, noradrenergic modulation increases extracellular concentration of neurotransmitters and neuromodulators, thereby facilitating neuronal interactions, especially during wakefulness. Synapse 70:307-316, 2016. (c) 2016 Wiley Periodicals, Inc.
PMCID:4909535
PMID: 27085090
ISSN: 1098-2396
CID: 2179592
Oral mucosal injury caused by mammalian target of rapamycin inhibitors: emerging perspectives on pathobiology and impact on clinical practice
Peterson, Douglas E; O'Shaughnessy, Joyce A; Rugo, Hope S; Elad, Sharon; Schubert, Mark M; Viet, Chi T; Campbell-Baird, Cynthia; Hronek, Jan; Seery, Virginia; Divers, Josephine; Glaspy, John; Schmidt, Brian L; Meiller, Timothy F
In recent years oral mucosal injury has been increasingly recognized as an important toxicity associated with mammalian target of rapamycin (mTOR) inhibitors, including in patients with breast cancer who are receiving everolimus. This review addresses the state-of-the-science regarding mTOR inhibitor-associated stomatitis (mIAS), and delineates its clinical characteristics and management. Given the clinically impactful pain associated with mIAS, this review also specifically highlights new research focusing on the study of the molecular basis of pain. The incidence of mIAS varies widely (2-78%). As reported across multiple mTOR inhibitor clinical trials, grade 3/4 toxicity occurs in up to 9% of patients. Managing mTOR-associated oral lesions with topical oral, intralesional, and/or systemic steroids can be beneficial, in contrast to the lack of evidence supporting steroid treatment of oral mucositis caused by high-dose chemotherapy or radiation. However, steroid management is not uniformly efficacious in all patients receiving mTOR inhibitors. Furthermore, technology does not presently exist to permit clinicians to predict a priori which of their patients will develop these lesions. There thus remains a strategic need to define the pathobiology of mIAS, the molecular basis of pain, and risk prediction relative to development of the clinical lesion. This knowledge could lead to novel future interventions designed to more effectively prevent mIAS and improve pain management if clinically significant mIAS lesions develop.
PMCID:4971919
PMID: 27334013
ISSN: 2045-7634
CID: 2158872
Striatal dopamine neurotransmission: regulation of release and uptake
Sulzer, David; Cragg, Stephanie J; Rice, Margaret E
Dopamine (DA) transmission is governed by processes that regulate release from axonal boutons in the forebrain and the somatodendritic compartment in midbrain, and by clearance by the DA transporter, diffusion, and extracellular metabolism. We review how axonal DA release is regulated by neuronal activity and by autoreceptors and heteroreceptors, and address how quantal release events are regulated in size and frequency. In brain regions densely innervated by DA axons, DA clearance is due predominantly to uptake by the DA transporter, whereas in cortex, midbrain, and other regions with relatively sparse DA inputs, the norepinephrine transporter and diffusion are involved. We discuss the role of DA uptake in restricting the sphere of influence of DA and in temporal accumulation of extracellular DA levels upon successive action potentials. The tonic discharge activity of DA neurons may be translated into a tonic extracellular DA level, whereas their bursting activity can generate discrete extracellular DA transients.
PMCID:4850498
PMID: 27141430
ISSN: 2210-5336
CID: 2101182
Resolving power for the diffusion orientation distribution function
Jensen, Jens H; Helpern, Joseph A
PURPOSE: The diffusion orientation distribution function (dODF) is primarily used for white matter fiber tractography. Here the resolving power of the dODF is investigated for a simple diffusion model of two intersecting axonal fiber bundles. METHODS: The resolving power for the dODF is evaluated using the Sparrow criterion. This is determined for the exact dODF and also for q-space imaging (QSI), q-ball, and kurtosis approximations. RESULTS: Based on theoretical and numerical calculations, the resolving power is found to depend on the eigenvalues of the diffusion model and on the degree of radial weighting for the dODF. The resolving powers of the QSI and q-ball dODFs improve with increased b-value. The kurtosis dODF has a resolving power similar to that of the exact dODF. CONCLUSION: The dODFs, whether exact or approximate, have finite resolving powers that limit their sensitivity to fiber crossings. The resolving powers for the different dODFs considered here provide convenient benchmarks for assessing and comparing their performance. Magn Reson Med, 2015. (c) 2015 Wiley Periodicals, Inc.
PMID: 26444579
ISSN: 1522-2594
CID: 2038332
Evaluation of breast cancer using intravoxel incoherent motion (IVIM) histogram analysis: comparison with malignant status, histological subtype, and molecular prognostic factors
Cho, Gene Young; Moy, Linda; Kim, Sungheon G; Baete, Steven H; Moccaldi, Melanie; Babb, James S; Sodickson, Daniel K; Sigmund, Eric E
PURPOSE: To examine heterogeneous breast cancer through intravoxel incoherent motion (IVIM) histogram analysis. MATERIALS AND METHODS: This HIPAA-compliant, IRB-approved retrospective study included 62 patients (age 48.44 +/- 11.14 years, 50 malignant lesions and 12 benign) who underwent contrast-enhanced 3 T breast MRI and diffusion-weighted imaging. Apparent diffusion coefficient (ADC) and IVIM biomarkers of tissue diffusivity (Dt), perfusion fraction (fp), and pseudo-diffusivity (Dp) were calculated using voxel-based analysis for the whole lesion volume. Histogram analysis was performed to quantify tumour heterogeneity. Comparisons were made using Mann-Whitney tests between benign/malignant status, histological subtype, and molecular prognostic factor status while Spearman's rank correlation was used to characterize the association between imaging biomarkers and prognostic factor expression. RESULTS: The average values of the ADC and IVIM biomarkers, Dt and fp, showed significant differences between benign and malignant lesions. Additional significant differences were found in the histogram parameters among tumour subtypes and molecular prognostic factor status. IVIM histogram metrics, particularly fp and Dp, showed significant correlation with hormonal factor expression. CONCLUSION: Advanced diffusion imaging biomarkers show relationships with molecular prognostic factors and breast cancer malignancy. This analysis reveals novel diagnostic metrics that may explain some of the observed variability in treatment response among breast cancer patients. KEY POINTS: * Novel IVIM biomarkers characterize heterogeneous breast cancer. * Histogram analysis enables quantification of tumour heterogeneity. * IVIM biomarkers show relationships with breast cancer malignancy and molecular prognostic factors.
PMCID:4894831
PMID: 26615557
ISSN: 1432-1084
CID: 1863172
Neural Correlates of Symptom Improvement Following Stimulant Treatment in Adults with Attention-Deficit/Hyperactivity Disorder
Yang, Zhen; Kelly, Clare; Castellanos, Francisco X; Leon, Terry; Milham, Michael P; Adler, Lenard A
OBJECTIVE: The purposes of this study were to examine the impact of 3 weeks of amphetamine administration on intrinsic connectome-wide connectivity patterns in adults with attention-deficit/hyperactivity disorder (ADHD) and explore the association between stimulant-induced symptom improvement and functional connectivity alteration. METHODS: Participants included 19 adults (age 20-55 years) diagnosed with ADHD using the Diagnostic and Statistical Manual of Mental Disorders, 4th ed., Text Revision (DSM-IV-TR) criteria (American Psychiatric Association 2000 ) per the Adult Clinician Diagnostic Scale taking part in amphetamine trials. For each patient, two 6-minute resting-state functional magnetic resonance imaging (R-fMRI) scans were acquired at baseline and after treatment. A fully data-driven multivariate analytic approach (i.e., multivariate distance matrix regression [MDMR]) was applied to R-fMRI data to characterize the distributed pharmacological effects in the entire functional connectome. Clinical efficacy was assessed using ADHD rating scale with adult prompts and the Adult Self-Report Scale v1.1 Symptom Checklist. We linked stimulant-induced functional connectivity changes to symptom amelioration using Spearman's correlation. RESULTS: Three weeks of administration of a stimulant significantly reduced ADHD symptoms. MDMR-based analyses on R-fMRI data highlighted the left dorsolateral prefrontal cortex (DLPFC, a key cognitive control region) and the medial prefrontal cortex (MPFC, the anterior core of default network) whose distributed patterns of functional connectivity across the entire brain were altered by psychostimulants. Follow-up intrinsic functional connectivity revealed that stimulants specifically decreased the positive functional connectivity between DLPFC-insula, DLPFC-anterior cingulate cortex, and MPFC-insula. Importantly, these functional connectivity changes are associated with symptom improvement. CONCLUSION: These results suggested that ADHD is associated with increased functional integration or decreased functional segregation between core regions of cognitive control, default, and salience networks. The apparent normalization of intrinsic functional interaction in these circuits (i.e., increased functional segregation) may underlie the clinical benefits produced by 3 weeks of amphetamine treatment.
PMCID:4991601
PMID: 27027541
ISSN: 1557-8992
CID: 2059182
Programmed cell death acts at different stages of Drosophila neurodevelopment to shape the central nervous system
Pinto-Teixeira, Filipe; Konstantinides, Nikolaos; Desplan, Claude
Nervous system development is a process that integrates cell proliferation, differentiation, and programmed cell death (PCD). PCD is an evolutionary conserved mechanism and a fundamental developmental process by which the final cell number in a nervous system is established. In vertebrates and invertebrates, PCD can be determined intrinsically by cell lineage and age, as well as extrinsically by nutritional, metabolic, and hormonal states. Drosophila has been an instrumental model for understanding how this mechanism is regulated. We review the role of PCD in Drosophila central nervous system development from neural progenitors to neurons, its molecular mechanism and function, how it is regulated and implemented, and how it ultimately shapes the fly central nervous system from the embryo to the adult. Finally, we discuss ideas that emerged while integrating this information.
PMCID:4983237
PMID: 27404003
ISSN: 1873-3468
CID: 2744802
Integrated Proteogenomic Characterization of Human High-Grade Serous Ovarian Cancer
Zhang, Hui; Liu, Tao; Zhang, Zhen; Payne, Samuel H; Zhang, Bai; McDermott, Jason E; Zhou, Jian-Ying; Petyuk, Vladislav A; Chen, Li; Ray, Debjit; Sun, Shisheng; Yang, Feng; Chen, Lijun; Wang, Jing; Shah, Punit; Cha, Seong Won; Aiyetan, Paul; Woo, Sunghee; Tian, Yuan; Gritsenko, Marina A; Clauss, Therese R; Choi, Caitlin; Monroe, Matthew E; Thomas, Stefani; Nie, Song; Wu, Chaochao; Moore, Ronald J; Yu, Kun-Hsing; Tabb, David L; Fenyo, David; Bafna, Vineet; Wang, Yue; Rodriguez, Henry; Boja, Emily S; Hiltke, Tara; Rivers, Robert C; Sokoll, Lori; Zhu, Heng; Shih, Ie-Ming; Cope, Leslie; Pandey, Akhilesh; Zhang, Bing; Snyder, Michael P; Levine, Douglas A; Smith, Richard D; Chan, Daniel W; Rodland, Karin D
To provide a detailed analysis of the molecular components and underlying mechanisms associated with ovarian cancer, we performed a comprehensive mass-spectrometry-based proteomic characterization of 174 ovarian tumors previously analyzed by The Cancer Genome Atlas (TCGA), of which 169 were high-grade serous carcinomas (HGSCs). Integrating our proteomic measurements with the genomic data yielded a number of insights into disease, such as how different copy-number alternations influence the proteome, the proteins associated with chromosomal instability, the sets of signaling pathways that diverse genome rearrangements converge on, and the ones most associated with short overall survival. Specific protein acetylations associated with homologous recombination deficiency suggest a potential means for stratifying patients for therapy. In addition to providing a valuable resource, these findings provide a view of how the somatic genome drives the cancer proteome and associations between protein and post-translational modification levels and clinical outcomes in HGSC.
PMCID:4967013
PMID: 27372738
ISSN: 1097-4172
CID: 2179552
Rapid Diagnosis of Tuberculosis from Analysis of Urine Volatile Organic Compounds
Lim, Sung H; Martino, Raymond; Anikst, Victoria; Xu, Zeyu; Mix, Samantha; Benjamin, Robert; Schub, Herbert; Eiden, Michael; Rhodes, Paul A; Banaei, Niaz
The World Health Organization has called for simple, sensitive, and non-sputum diagnostics for tuberculosis. We report development of a urine tuberculosis test using a colorimetric sensor array (CSA). The sensor comprised of 73 different indicators captures high-dimensional, spatiotemporal signatures of volatile chemicals emitted by human urine samples. The sensor responses to 63 urine samples collected from 22 tuberculosis cases and 41 symptomatic controls were measured under five different urine test conditions. Basified testing condition yielded the best accuracy with 85.5% sensitivity and 79.5% specificity. The CSA urine assay offers desired features needed for tuberculosis diagnosis in endemic settings.
PMCID:5648341
PMID: 29057329
ISSN: 2379-3694
CID: 3547312