Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14017


Tumorigenic alterations by mutant IDH1 in early gliomagenesis [Meeting Abstract]

Modrek, A; Khan, T; Kader, M; Bayin, S; Zhang, G; Neubert, T; Placantonakis, D
Mutations in genes encoding Isocitrate Dehydrogenase (IDH) isoforms are found in80%of low-grade gliomas (LGGs). Sequencing of LGGs has revealed branching cancer genetics; mutant IDH1 astrocytomas contain p53 and ATRX loss of function mutations, while IDH1-mutated oligodendrogliomas have a different set of mutations that includes chr 1p/19q co-deletion. The IDH mutation is a gain-of-function change at its catalytic core that results in the production of (R)-2-hydroxyglutarate, an oncometabolite, which causes characteristic DNA and histone hypermethylation changes that may contribute to tumorigenesis. Mouse models have thus far failed to demonstrate the role of IDH1 mutations in LGG formation. To test the hypothesis that mutant IDH1 is a driver of gliomagenesis, we use human embryonic stem cell (hESC)-derived neural stem cells (NSCs) to overexpress mutant IDH1 protein in combination with p53 and ATRX knockdown. We have generated twelve NSC lines that harbor combinations of mutant IDH1, wt IDH1 or an empty vector, in combination with ATRX and/or p53 knockdown. Our preliminary data indicate that mutantIDH1 does not alter the proliferative capacity of NSCs, as shown by cell cycle analysis and Ki67 staining, but paradoxically increases their apoptotic rate (15.8% vs 5.9% n = 4), a phenotype that is exacerbated by ATRX knockdown, as detected by annexin V and TUNEL staining (17.7% vs 2.6% n = 3). shRNA-mediated knockdown of p53 salvages the pro-apoptotic phenotype of mutant IDH1 and ATRX NSCs. Furthermore, initial observations suggest that mutant IDH1 biases NSCs toward glial fates, as evidenced by upregulation of the CD44 cell surface marker. We are currently testing the effects of IDH1 mutation on i) NSC differentiation to astrocytic and neuronal lineages, ii) NSC metabolism via metabolomics profiling and iii) in vivo tumorigenesis. We propose that mutant IDH1 alters the differentiation program of human NSCs toward glial rather than neuronal fates
EMBASE:72189019
ISSN: 1522-8517
CID: 2015922

Antitumor activity of melinjo (Gnetum gnemon L.) seed extract in human and murine tumor models in vitro and in a colon-26 tumor-bearing mouse model in vivo

Narayanan, Narayanan K; Kunimasa, Kazuhiro; Yamori, Yukio; Mori, Mari; Mori, Hideki; Nakamura, Kazuki; Miller, George; Manne, Upender; Tiwari, Amit K; Narayanan, Bhagavathi
Melinjo (Gnetum gnemon L.) seed extract (MSE) and its active ingredient gnetin C (GC), a resveratrol dimer, have been shown to possess a broad spectrum of pharmacological activities. In this study, we investigated the antitumor activity of MSE and GC using human and murine tumor cell culture models in vitro. The antitumor activity of GC was compared with trans-resveratrol (tRV), a stilbenoid polyphenol. Our results show that MSE and GC at clinically achievable concentrations significantly inhibited the proliferation of pancreatic, prostate, breast, and colon cancer cell types (P < 0.05), without affecting normal cells. Interestingly, GC exerts enhanced antitumor activity than that of tRV (P < 0.05). MSE and GC significantly induced apoptosis in all the cancer cells, indicating MSE and GC inhibit tumor cell growth by inducing apoptosis (P < 0.001). Our findings provide evidence that MSE might induce apoptosis in cancer cells via caspase-3/7-dependent and -independent mechanisms. However, GC might trigger both early and late stage apoptosis in cancer cells, at least in part by activating caspase 3/7-dependent mechanisms. Furthermore, the antitumor efficacy of MSE observed in vitro was also validated in a widely used colon-26 tumor-bearing mouse model. Oral administration of MSE at 50 and 100 mg/kg per day significantly inhibited tumor growth, intratumoral angiogenesis, and liver metastases in BALB/c mice bearing colon-26 tumors (P < 0.05). In conclusion, our findings provide evidence that MSE and GC have potent antitumor activity. Most importantly, we provide the first evidence that MSE inhibits tumor growth, intratumoral angiogenesis, and liver metastasis in a colon-26 tumor-bearing mice.
PMCID:4674003
PMID: 26408414
ISSN: 2045-7634
CID: 1787112

Syndecan-1 identifies and controls the frequency of IL-17-producing naive natural killer T (NKT17) cells in mice

Dai, Hong; Rahman, Ayesha; Saxena, Ankit; Jaiswal, Anil K; Mohamood, Abdiaziz; Ramirez, Lourdes; Noel, Sanjeev; Rabb, Hamid; Jie, Chunfa; Hamad, Abdel Rahim A
Invariant natural killer T (iNKT) cells recognize glycolipids as antigens and diversify into NKT1 (IFN-gamma), NKT2 (IL-4), and NKT17 (IL-17) functional subsets while developing in the thymus. Mechanisms that govern the balance between these functional subsets are poorly understood due, partly, to the lack of distinguishing surface markers. Here we identify the heparan sulfate proteoglycan syndecan-1 (sdc1) as a specific marker of naive thymic NKT17 cells in mice and show that sdc1 deficiency significantly increases thymic NKT17 cells at the expense of NKT1 cells, leading to impaired iNKT cell-derived IFN-gamma, both in vitro and in vivo. Using surface expression of sdc1 to identify NKT17 cells, we confirm differential tissue localization and interstrain variability of NKT17 cells, and reveal that NKT17 cells express high levels of TCR-beta, preferentially use Vbeta8, and are more highly sensitive to a-GalCer than to CD3/CD28 stimulation. These findings provide a novel, noninvasive, simple method for identification, and viable sorting of naive NKT17 cells from unmanipulated mice, and suggest that sdc1 expression negatively regulates homeostasis in iNKT cells. In addition, these findings lay the groundwork for investigating the mechanisms by which sdc1 regulates NKT17 cells.
PMCID:4676762
PMID: 26300525
ISSN: 1521-4141
CID: 2036262

Microhomology-Mediated End Joining: A Back-up Survival Mechanism or Dedicated Pathway?

Sfeir, Agnel; Symington, Lorraine S
DNA double-strand breaks (DSBs) disrupt the continuity of chromosomes and their repair by error-free mechanisms is essential to preserve genome integrity. Microhomology-mediated end joining (MMEJ) is an error-prone repair mechanism that involves alignment of microhomologous sequences internal to the broken ends before joining, and is associated with deletions and insertions that mark the original break site, as well as chromosome translocations. Whether MMEJ has a physiological role or is simply a back-up repair mechanism is a matter of debate. Here we review recent findings pertaining to the mechanism of MMEJ and discuss its role in normal and cancer cells.
PMCID:4638128
PMID: 26439531
ISSN: 0968-0004
CID: 1794592

Edaravone leads to proteome changes indicative of neuronal cell protection in response to oxidative stress

Jami, Mohammad-Saeid; Salehi-Najafabadi, Zahra; Ahmadinejad, Fereshteh; Hoedt, Esthelle; Chaleshtori, Morteza Hashemzadeh; Neubert, Thomas A; Larsen, Jan Petter; Moller, Simon Geir
Neuronal cell death, in neurodegenerative disorders, is mediated through a spectrum of biological processes. Excessive amounts of free radicals, such as reactive oxygen species (ROS), has detrimental effects on neurons leading to cell damage via peroxidation of unsaturated fatty acids in the cell membrane. Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) has been used for neurological recovery in several countries, including Japan and China, and it has been suggested that Edaravone may have cytoprotective effects in neurodegeneration. Edaravone protects nerve cells in the brain by reducing ROS and inhibiting apoptosis. To gain further insight into the cytoprotective effects of Edaravone against oxidative stress condition we have performed comparative two-dimensional gel electrophoresis (2DE)-based proteomic analyses on SH-SY5Y neuroblastoma cells exposed to oxidative stress and in combination with Edaravone. We showed that Edaravone can reverse the cytotoxic effects of H2O2 through its specific mechanism. We observed that oxidative stress changes metabolic pathways and cytoskeletal integrity. Edaravone seems to reverse the H2O2-mediated effects at both the cellular and protein level via induction of Peroxiredoxin-2.
PMCID:4675627
PMID: 26232623
ISSN: 1872-9754
CID: 1698762

Resident c-kit(+) cells in the heart are not cardiac stem cells

Sultana, Nishat; Zhang, Lu; Yan, Jianyun; Chen, Jiqiu; Cai, Weibin; Razzaque, Shegufta; Jeong, Dongtak; Sheng, Wei; Bu, Lei; Xu, Mingjiang; Huang, Guo-Ying; Hajjar, Roger J; Zhou, Bin; Moon, Anne; Cai, Chen-Leng
Identifying a bona fide population of cardiac stem cells (CSCs) is a critical step for developing cell-based therapies for heart failure patients. Previously, cardiac c-kit(+) cells were reported to be CSCs with a potential to become myocardial, endothelial and smooth muscle cells in vitro and after cardiac injury. Here we provide further insights into the nature of cardiac c-kit(+) cells. By targeting the c-kit locus with multiple reporter genes in mice, we find that c-kit expression rarely co-localizes with the expression of the cardiac progenitor and myogenic marker Nkx2.5, or that of the myocardial marker, cardiac troponin T (cTnT). Instead, c-kit predominantly labels a cardiac endothelial cell population in developing and adult hearts. After acute cardiac injury, c-kit(+) cells retain their endothelial identity and do not become myogenic progenitors or cardiomyocytes. Thus, our work strongly suggests that c-kit(+) cells in the murine heart are endothelial cells and not CSCs.
PMCID:4846318
PMID: 26515110
ISSN: 2041-1723
CID: 1817662

MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis

Ouimet, Mireille; Ediriweera, Hasini N; Gundra, U Mahesh; Sheedy, Frederick J; Ramkhelawon, Bhama; Hutchison, Susan B; Rinehold, Kaitlyn; van Solingen, Coen; Fullerton, Morgan D; Cecchini, Katharine; Rayner, Katey J; Steinberg, Gregory R; Zamore, Phillip D; Fisher, Edward A; Loke, P'ng; Moore, Kathryn J
Cellular metabolism is increasingly recognized as a controller of immune cell fate and function. MicroRNA-33 (miR-33) regulates cellular lipid metabolism and represses genes involved in cholesterol efflux, HDL biogenesis, and fatty acid oxidation. Here, we determined that miR-33-mediated disruption of the balance of aerobic glycolysis and mitochondrial oxidative phosphorylation instructs macrophage inflammatory polarization and shapes innate and adaptive immune responses. Macrophage-specific Mir33 deletion increased oxidative respiration, enhanced spare respiratory capacity, and induced an M2 macrophage polarization-associated gene profile. Furthermore, miR-33-mediated M2 polarization required miR-33 targeting of the energy sensor AMP-activated protein kinase (AMPK), but not cholesterol efflux. Notably, miR-33 inhibition increased macrophage expression of the retinoic acid-producing enzyme aldehyde dehydrogenase family 1, subfamily A2 (ALDH1A2) and retinal dehydrogenase activity both in vitro and in a mouse model. Consistent with the ability of retinoic acid to foster inducible Tregs, miR-33-depleted macrophages had an enhanced capacity to induce forkhead box P3 (FOXP3) expression in naive CD4+ T cells. Finally, treatment of hypercholesterolemic mice with miR-33 inhibitors for 8 weeks resulted in accumulation of inflammation-suppressing M2 macrophages and FOXP3+ Tregs in plaques and reduced atherosclerosis progression. Collectively, these results reveal that miR-33 regulates macrophage inflammation and demonstrate that miR-33 antagonism is atheroprotective, in part, by reducing plaque inflammation by promoting M2 macrophage polarization and Treg induction.
PMCID:4665799
PMID: 26517695
ISSN: 1558-8238
CID: 1882642

ERO1-independent production of H2O2 within the endoplasmic reticulum fuels Prdx4-mediated oxidative protein folding

Konno, Tasuku; Pinho Melo, Eduardo; Lopes, Carlos; Mehmeti, Ilir; Lenzen, Sigurd; Ron, David; Avezov, Edward
The endoplasmic reticulum (ER)-localized peroxiredoxin 4 (PRDX4) supports disulfide bond formation in eukaryotic cells lacking endoplasmic reticulum oxidase 1 (ERO1). The source of peroxide that fuels PRDX4-mediated disulfide bond formation has remained a mystery, because ERO1 is believed to be a major producer of hydrogen peroxide (H2O2) in the ER lumen. We report on a simple kinetic technique to track H2O2 equilibration between cellular compartments, suggesting that the ER is relatively isolated from cytosolic or mitochondrial H2O2 pools. Furthermore, expression of an ER-adapted catalase to degrade lumenal H2O2 attenuated PRDX4-mediated disulfide bond formation in cells lacking ERO1, whereas depletion of H2O2 in the cytosol or mitochondria had no similar effect. ER catalase did not effect the slow residual disulfide bond formation in cells lacking both ERO1 and PRDX4. These observations point to exploitation of a hitherto unrecognized lumenal source of H2O2 by PRDX4 and a parallel slow H2O2-independent pathway for disulfide formation.
PMCID:4621842
PMID: 26504166
ISSN: 1540-8140
CID: 2039302

Physiological modulation of BiP activity by trans-protomer engagement of the interdomain linker

Preissler, Steffen; Chambers, Joseph E; Crespillo-Casado, Ana; Avezov, Edward; Miranda, Elena; Perez, Juan; Hendershot, Linda M; Harding, Heather P; Ron, David
DnaK/Hsp70 chaperones form oligomers of poorly understood structure and functional significance. Site-specific proteolysis and crosslinking were used to probe the architecture of oligomers formed by the endoplasmic reticulum (ER) Hsp70, BiP. These were found to consist of adjacent protomers engaging the interdomain linker of one molecule in the substrate binding site of another, attenuating the chaperone function of oligomeric BiP. Native gel electrophoresis revealed a rapidly-modulated reciprocal relationship between the burden of unfolded proteins and BiP oligomers and slower equilibration between oligomers and inactive, covalently-modified BiP. Lumenal ER calcium depletion caused rapid oligomerization of mammalian BiP and a coincidental diminution in substrate binding, pointing to the relative inertness of the oligomers. Thus, equilibration between inactive oligomers and active monomeric BiP is poised to buffer fluctuations in ER unfolded protein load on a rapid timescale attainable neither by inter-conversion of active and covalently-modified BiP nor by the conventional unfolded protein response.
PMCID:4608358
PMID: 26473973
ISSN: 2050-084x
CID: 2038722

Compliance control: Managed vulnerability surface in social-technological systems via signaling games

Chapter by: Casey, Will; Zhu, Quanyan; Morales, Jose Andre; Mishra, Bud
in: MIST 2015 - Proceedings of the 7th ACM CCS International Workshop on Managing Insider Security Threats, co-located with CCS 2015 by
[S.l.] : Association for Computing Machinery, Incacmhelp@acm.org, 2015
pp. 53-62
ISBN: 9781450338240
CID: 2852402