Searched for: school:SOM
Department/Unit:Neuroscience Institute
Dietary habit and risk of urolithiasis [Meeting Abstract]
Goldfarb, D S
This symposium will review recent information regarding the relationship between diet and kidney stones. Information about diet and its effects on stone risk can be derived from 24 h urine collections. Recommendations regarding diet and beverage use will be surveyed. Proposals regarding randomized controlled trials, both past and future, will be presented
EMBASE:72343739
ISSN: 2194-7228
CID: 2204692
Development of Odor Hedonics: Experience-Dependent Ontogeny of Circuits Supporting Maternal and Predator Odor Responses in Rats
Perry, Rosemarie E; Al Ain, Syrina; Raineki, Charlis; Sullivan, Regina M; Wilson, Donald A
A major component of perception is hedonic valence: perceiving stimuli as pleasant or unpleasant. Here, we used early olfactory experiences that shape odor preferences and aversions to explore developmental plasticity in circuits mediating odor hedonics. We used 2-deoxyglucose autoradiographic mapping of neural activity to identify circuits differentially activated by biologically relevant preferred and avoided odors across rat development. We then further probed this system by increasing or decreasing hedonic value. Using both region of interest and functional connectivity analyses, we identified regions within primary olfactory, amygdala/hippocampal, and prefrontal cortical networks that were activated differentially by maternal and male odors. Although some activated regions remained stable across development (postnatal days 7-23), there was a developmental emergence of others that resulted in an age-dependent elaboration of hedonic-response-specific circuitry despite stable behavioral responses (approach/avoidance) to the odors across age. Hedonic responses to these biologically important odors were modified through diet suppression of the maternal odor and co-rearing with a male. This allowed assessment of hedonic circuits in isolation of the specific odor quality and/or intensity. Early experience significantly modified odor-evoked circuitry in an age-dependent manner. For example, co-rearing with a male, which induced pup attraction to male odor, reduced activity in amygdala regions normally activated by the unfamiliar avoided male odor, making this region more consistent with maternal odor. Understanding the development of odor hedonics, particularly within the context of altered early life experience, provides insight into the development of sensory processes, food preferences, and the formation of social affiliations, among other behaviors. SIGNIFICANCE STATEMENT: Odor hedonic valence controls approach-avoidance behaviors, but also modulates ongoing behaviors ranging from food preferences and social affiliation with the caregiver to avoidance of predator odors. Experiences can shape hedonic valence. This study explored brain circuitry involved in odor hedonic encoding throughout development using maternal and predator odors and assessed the effects of early life experience on odor hedonic encoding by increasing/decreasing the hedonic value of these odors. Understanding the role of changing brain circuitry during development and its impact on behavioral function is critical for understanding sensory processing across development. These data converge with exciting literature on the brain's hedonic network and highlight the significant role of early life experience in shaping the neural networks of highly biologically relevant stimuli.
PMCID:4916244
PMID: 27335397
ISSN: 1529-2401
CID: 2158072
Love spots
Perry, Michael W; Desplan, Claude
A Quick guide to Love Spots: striking male-specific regions of the eye found in some insects that are used for detecting and chasing females.
PMCID:5154687
PMID: 27326705
ISSN: 1879-0445
CID: 2744822
Tau Pathology Mediated Presynaptic Dysfunction
Moreno, H; Morfini, G; Buitrago, L; Ujlaki, G; Choi, S; Yu, E; Moreira, J E; Avila, J; Brady, S T; Pant, H; Sugimori, M; Llinas, R R
Brain tauopathies are characterized by abnormal processing of tau protein. While somatodendritic tau mislocalization has attracted considerable attention in tauopathies, the role of tau pathology in axonal transport, connectivity and related dysfunctions remains obscure. We have previously shown using the squid giant synapse that presynaptic microinjection of recombinant human tau protein (htau42) results in failure of synaptic transmission. Here, we evaluated molecular mechanisms mediating this effect. Thus, the initial event, observed after htau42 presynaptic injection, was an increase in transmitter release. This event was mediated by calcium release from intracellular stores and was followed by a reduction in evoked transmitter release. The effect of htau42 on synaptic transmission was recapitulated by a peptide comprising the phosphatase-activating domain of tau, suggesting activation of phosphotransferases. Accordingly, findings indicated that htau42-mediated toxicity involves the activities of both GSK3 and Cdk5 kinases.
PMCID:4887082
PMID: 27012611
ISSN: 1873-7544
CID: 2052192
Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body beta-hydroxybutyrate
Sleiman, Sama F; Henry, Jeffrey; Al-Haddad, Rami; El Hayek, Lauretta; Abou Haidar, Edwina; Stringer, Thomas; Ulja, Devyani; Karuppagounder, Saravanan S; Holson, Edward B; Ratan, Rajiv R; Ninan, Ipe; Chao, Moses V
Exercise induces beneficial responses in the brain, which is accompanied by an increase in BDNF, a trophic factor associated with cognitive improvement and the alleviation of depression and anxiety. However, the exact mechanisms whereby physical exercise produces an induction in brain Bdnf gene expression are not well understood. While pharmacological doses of HDAC inhibitors exert positive effects on Bdnf gene transcription, the inhibitors represent small molecules that do not occur in vivo. Here, we report that an endogenous molecule released after exercise is capable of inducing key promoters of the Mus musculus Bdnf gene. The metabolite beta-hydroxybutyrate, which increases after prolonged exercise, induces the activities of Bdnf promoters, particularly promoter I, which is activity-dependent. We have discovered that the action of beta-hydroxybutyrate is specifically upon HDAC2 and HDAC3, which act upon selective Bdnf promoters. Moreover, the effects upon hippocampal Bdnf expression were observed after direct ventricular application of beta-hydroxybutyrate. Electrophysiological measurements indicate that beta-hydroxybutyrate causes an increase in neurotransmitter release, which is dependent upon the TrkB receptor. These results reveal an endogenous mechanism to explain how physical exercise leads to the induction of BDNF.
PMCID:4915811
PMID: 27253067
ISSN: 2050-084x
CID: 2125162
Flexible Valuations for Consumer Goods as Measured by the Becker-DeGroot-Marschak Mechanism
Tymula, Agnieszka; Woelbert, Eva; Glimcher, Paul
Economists, psychologists, and neuroscientists have long been interested in methods that elicit individuals' true valuations of goods. In this paper, we take 1 of the most popular of such mechanisms, the Becker-DeGroot-Marschak (BDM) procedure, and study the nature of the dependence of the valuations obtained using the BDM procedure on the distribution of prices presented to subjects when the method is implemented. In a within-subject design with products with a high market value, we show that this effect of price distribution occurs quite frequently, significantly impacts reported valuations, and is unlikely to be caused by misconceptions about the BDM procedure. This effect is largest when pricing distributions show a large peak close to an individual's average valuation of the good. A simple nonincentive-compatible subjective rating of the desirability of goods can be used to predict the likelihood that pricing distributions will influence BDM valuations; valuations for goods that subjects report to most want to purchase are most likely to be influenced by distributional structure. Our results challenge some of the dominant theoretical models of how BDM-like valuation procedures relate to standard notions of utility and shed light on how to interpret the data obtained using the BDM method.
ISI:000381270200001
ISSN: 2151-318x
CID: 2754892
Plasticity of sarcolemmal KATP channel surface expression during ischemia and ischemic preconditioning
Yang, Hua-Qian; Foster, Monique N; Jana, Kundan; Ho, Joanne; Rindler, Michael J; Coetzee, William A
AIMS: Myocardial ischemia remains the prime cause of morbidity and mortality in the United States. Ischemic preconditioning (IPC) is a powerful form of endogenous protection against myocardial infarction. We studied alterations in KATPchannels surface density as a potential mechanism of IPC's protection. METHODS AND RESULTS: Using cardiac-specific knockout of Kir6.2 subunits, we demonstrate an essential role for sarcolemmal KATPchannels in the infarct-limiting effect of IPC in the mouse heart. With biochemical membrane fractionation, we demonstrated that sarcolemmal KATPchannel subunits are distributed both to the sarcolemma and intracellular endosomal compartments. Global ischemia causes a loss of sarcolemmal KATPchannel subunit distribution and internalization to endosomal compartments. Ischemia-induced internalization of KATPchannels was prevented by CaMKII inhibition. KATPchannel subcellular redistribution was also observed with immunohistochemistry. Ischemic preconditioning prior to the index ischemia reduces not only the infarct size, but also prevents KATPchannel internalization. Furthermore, not only did adenosine mimic IPC by preventing infarct size, but it also prevented ischemia-induced KATPchannel internalization via a PKC-mediated pathway. We show that preventing endocytosis with dynasore reduces both KATPchannel internalization and strongly mitigates infarct development. CONCLUSIONS: Our data demonstrate that plasticity of KATPchannel surface expression must be considered as a potentially important mechanism of the protective effects of IPC and adenosine.
PMCID:4935516
PMID: 27037371
ISSN: 1522-1539
CID: 2059432
Neural Representation of Odor-Guided Behavior in the Rat Olfactory Thalamus
Courtiol, Emmanuelle; Wilson, Donald A
The mediodorsal thalamus (MDT) is a higher-order corticocortical thalamic nucleus involved in cognition and memory. However, anatomically, the MDT is also the primary site of olfactory representation in the thalamus, receiving strong inputs from olfactory cortex and having reciprocal connections with orbitofrontal cortex (OFC). Nonetheless, its role in olfaction remains unclear. Here, we recorded single units in the MDT, as well as local field potentials in the MDT, piriform cortex (PCX), and OFC in rats performing a two-alternative odor discrimination task. We show that subsets of MDT units display odorant selectivity during sampling, as well as encoding of spatio-motor aspects of the task. Furthermore, the olfactory trans-thalamic network rapidly switches functional connectivity between MDT and cortical areas depending on current task demands, with, for example, MDT-PCX coupling enhanced during odor sampling and MDT-OFC coupling enhanced during the decision/goal approach compared with baseline and presampling. These results demonstrate MDT representation of diverse sensorimotor components of an olfactory task. SIGNIFICANCE STATEMENT: The mediodorsal thalamus (MDT) is the major olfactory thalamic nucleus and links the olfactory archicortex with the prefrontal neocortex. The MDT is well known to be involved in higher-order cognitive and memory functions, but its role in olfaction is poorly understood. Here, using single-unit and local field potential analyses, we explored MDT function during an odor-guided decision task in rats. We describe MDT odor and multisensory coding and demonstrate behavior-dependent functional connectivity within the MDT/sensory cortex/prefrontal cortex network. Our results suggest a rich representation of olfactory and other information within MDT required to perform this odor-guided task. Our work opens a new model system for understanding MDT function and exploring the important role of MDT in cortical-cortical communication.
PMID: 27251617
ISSN: 1529-2401
CID: 2124872
Properties of pattern and component direction-selective cells in area MT of the macaque
Wang, Helena X; Movshon, J Anthony
Neurons in area MT/V5 of the macaque visual cortex encode visual motion. Some cells are selective for the motion of oriented features (component direction-selective, CDS); others respond to the true direction of complex patterns (pattern-direction selective, PDS). There is a continuum of selectivity in MT, with CDS cells at one extreme and PDS cells at the other; we compute a pattern index that captures this variation. It is unknown how a neuron's pattern index is related to its other tuning characteristics. We therefore analyzed the responses of 792 MT cells recorded in the course of other experiments from opiate-anesthetized macaque monkeys, as a function of the direction, spatial frequency, drift rate, size, and contrast of sinusoidal gratings and of the direction and speed of random-dot textures. We also compared MT responses to those of 718 V1 cells. As expected, MT cells with higher pattern index tended to have stronger direction selectivity and broader direction tuning to gratings, and they responded better to plaids than to gratings. Strongly PDS cells also tended to have smaller receptive fields and stronger surround suppression. Interestingly, they also responded preferentially to higher drift rates and higher speeds of moving dots. The spatial frequency preferences of PDS cells depended strongly on their preferred temporal frequencies, whereas these preferences were independent in component-selective cells. Pattern direction selectivity is statistically associated with many response properties of MT cells but not strongly associated with any particular property. Pattern-selective signals are thus available in association with most other signals exported by MT.
PMCID:4922598
PMID: 26561603
ISSN: 1522-1598
CID: 2161972
Ultrasonic neuromodulation
Naor, Omer; Krupa, Steve; Shoham, Shy
Ultrasonic waves can be non-invasively steered and focused into mm-scale regions across the human body and brain, and their application in generating controlled artificial modulation of neuronal activity could therefore potentially have profound implications for neural science and engineering. Ultrasonic neuro-modulation phenomena were experimentally observed and studied for nearly a century, with recent discoveries on direct neural excitation and suppression sparking a new wave of investigations in models ranging from rodents to humans. In this paper we review the physics, engineering and scientific aspects of ultrasonic fields, their control in both space and time, and their effect on neuronal activity, including a survey of both the field's foundational history and of recent findings. We describe key constraints encountered in this field, as well as key engineering systems developed to surmount them. In closing, the state of the art is discussed, with an emphasis on emerging research and clinical directions.
PMID: 27153566
ISSN: 1741-2552
CID: 2515512