Searched for: school:SOM
Department/Unit:Neuroscience Institute
Plasticity of sarcolemmal KATP channel surface expression during ischemia and ischemic preconditioning
Yang, Hua-Qian; Foster, Monique N; Jana, Kundan; Ho, Joanne; Rindler, Michael J; Coetzee, William A
AIMS: Myocardial ischemia remains the prime cause of morbidity and mortality in the United States. Ischemic preconditioning (IPC) is a powerful form of endogenous protection against myocardial infarction. We studied alterations in KATPchannels surface density as a potential mechanism of IPC's protection. METHODS AND RESULTS: Using cardiac-specific knockout of Kir6.2 subunits, we demonstrate an essential role for sarcolemmal KATPchannels in the infarct-limiting effect of IPC in the mouse heart. With biochemical membrane fractionation, we demonstrated that sarcolemmal KATPchannel subunits are distributed both to the sarcolemma and intracellular endosomal compartments. Global ischemia causes a loss of sarcolemmal KATPchannel subunit distribution and internalization to endosomal compartments. Ischemia-induced internalization of KATPchannels was prevented by CaMKII inhibition. KATPchannel subcellular redistribution was also observed with immunohistochemistry. Ischemic preconditioning prior to the index ischemia reduces not only the infarct size, but also prevents KATPchannel internalization. Furthermore, not only did adenosine mimic IPC by preventing infarct size, but it also prevented ischemia-induced KATPchannel internalization via a PKC-mediated pathway. We show that preventing endocytosis with dynasore reduces both KATPchannel internalization and strongly mitigates infarct development. CONCLUSIONS: Our data demonstrate that plasticity of KATPchannel surface expression must be considered as a potentially important mechanism of the protective effects of IPC and adenosine.
PMCID:4935516
PMID: 27037371
ISSN: 1522-1539
CID: 2059432
Flexible Valuations for Consumer Goods as Measured by the Becker-DeGroot-Marschak Mechanism
Tymula, Agnieszka; Woelbert, Eva; Glimcher, Paul
Economists, psychologists, and neuroscientists have long been interested in methods that elicit individuals' true valuations of goods. In this paper, we take 1 of the most popular of such mechanisms, the Becker-DeGroot-Marschak (BDM) procedure, and study the nature of the dependence of the valuations obtained using the BDM procedure on the distribution of prices presented to subjects when the method is implemented. In a within-subject design with products with a high market value, we show that this effect of price distribution occurs quite frequently, significantly impacts reported valuations, and is unlikely to be caused by misconceptions about the BDM procedure. This effect is largest when pricing distributions show a large peak close to an individual's average valuation of the good. A simple nonincentive-compatible subjective rating of the desirability of goods can be used to predict the likelihood that pricing distributions will influence BDM valuations; valuations for goods that subjects report to most want to purchase are most likely to be influenced by distributional structure. Our results challenge some of the dominant theoretical models of how BDM-like valuation procedures relate to standard notions of utility and shed light on how to interpret the data obtained using the BDM method.
ISI:000381270200001
ISSN: 2151-318x
CID: 2754892
Properties of pattern and component direction-selective cells in area MT of the macaque
Wang, Helena X; Movshon, J Anthony
Neurons in area MT/V5 of the macaque visual cortex encode visual motion. Some cells are selective for the motion of oriented features (component direction-selective, CDS); others respond to the true direction of complex patterns (pattern-direction selective, PDS). There is a continuum of selectivity in MT, with CDS cells at one extreme and PDS cells at the other; we compute a pattern index that captures this variation. It is unknown how a neuron's pattern index is related to its other tuning characteristics. We therefore analyzed the responses of 792 MT cells recorded in the course of other experiments from opiate-anesthetized macaque monkeys, as a function of the direction, spatial frequency, drift rate, size, and contrast of sinusoidal gratings and of the direction and speed of random-dot textures. We also compared MT responses to those of 718 V1 cells. As expected, MT cells with higher pattern index tended to have stronger direction selectivity and broader direction tuning to gratings, and they responded better to plaids than to gratings. Strongly PDS cells also tended to have smaller receptive fields and stronger surround suppression. Interestingly, they also responded preferentially to higher drift rates and higher speeds of moving dots. The spatial frequency preferences of PDS cells depended strongly on their preferred temporal frequencies, whereas these preferences were independent in component-selective cells. Pattern direction selectivity is statistically associated with many response properties of MT cells but not strongly associated with any particular property. Pattern-selective signals are thus available in association with most other signals exported by MT.
PMCID:4922598
PMID: 26561603
ISSN: 1522-1598
CID: 2161972
The neural circuits of mating and fighting in male mice
Hashikawa, Koichi; Hashikawa, Yoshiko; Falkner, Annegret; Lin, Dayu
Tinbergen proposed that instinctive behaviors can be divided into appetitive and consummatory phases. During mating and aggression, the appetitive phase contains various actions to bring an animal to a social target and the consummatory phase allows stereotyped actions to take place. Here, we summarize recent advances in elucidating the neural circuits underlying the appetitive and consummatory phases of sexual and aggressive behaviors with a focus on male mice. We outline the role of the main olfactory inputs in the initiation of social approach; the engagement of the accessory olfactory system during social investigation, and the role of the hypothalamus and its downstream pathways in orchestrating social behaviors through a suite of motor actions.
PMCID:4921288
PMID: 26849838
ISSN: 1873-6882
CID: 1933242
Brain processing of a configural vs elemental odor mixture in the newborn rabbit
Schneider, Nanette Y; Datiche, Frederique; Wilson, Donald A; Gigot, Vincent; Thomas-Danguin, Thierry; Ferreira, Guillaume; Coureaud, Gerard
Organisms are surrounded throughout life by chemically complex odors. How individuals process an odorant within a mixture or a mixture as a whole is a key question in neuroethology and chemical senses. This question is addressed here by using newborn rabbits, which can be rapidly conditioned to a new stimulus by single association with the mammary pheromone. After conditioning to ethyl maltol (odorant B), pups behaviorally respond to B and an A'B' mixture (68/32 ratio) but not to ethyl isobutyrate (odorant A) or an AB mixture (30/70 ratio). This suggests elemental and configural perception of A'B' and AB, respectively. We then explored the neural substrates underlying the processing of these mixtures with the hypothesis that processing varies according to perception. Pups were pseudoconditioned or conditioned to B on postnatal day 3 before exposure to B, A'B' or AB on day 4. Fos expression was not similar between groups (mainly in the olfactory bulb and posterior piriform cortex) suggesting a differential processing of the stimuli that might reflect either stimulus complexity or conditioning effect. Thus, the ratio of components in A'B' vs AB leads to differential activation of the olfactory system which may contribute to elemental and configural percepts of these mixtures. In addition, together with recent behavioral data, this highlights that configural perception occurs even in relatively immature animals, emphasizing the value of the newborn rabbit for exploration of odor mixture processing from molecules to brain and behavior.
PMID: 25982221
ISSN: 1863-2661
CID: 2124282
Protein homeostasis gene dysregulation in pretangle-bearing nucleus basalis neurons during the progression of Alzheimer's disease
Tiernan, Chelsea T; Ginsberg, Stephen D; Guillozet-Bongaarts, Angela L; Ward, Sarah M; He, Bin; Kanaan, Nicholas M; Mufson, Elliott J; Binder, Lester I; Counts, Scott E
Conformational phosphorylation and cleavage events drive the tau protein from a soluble, monomeric state to a relatively insoluble, polymeric state that precipitates the formation of neurofibrillary tangles (NFTs) in projection neurons in Alzheimer's disease (AD), including the magnocellular perikarya located in the nucleus basalis of Meynert (NBM) complex of the basal forebrain. Whether these structural changes in the tau protein are associated with pathogenic changes at the molecular and cellular level remains undetermined during the onset of AD. Here, we examined alterations in gene expression within individual NBM neurons immunostained for pS422, an early tau phosphorylation event, or dual labeled for pS422 and TauC3, a later stage tau neoepitope, from tissue obtained postmortem from subjects who died with an antemortem clinical diagnosis of no cognitive impairment, mild cognitive impairment, or mild/moderate AD. Specifically, pS422-positive pretangles displayed an upregulation of select gene transcripts subserving protein quality control. On the other hand, late-stage TauC3-positive NFTs exhibited upregulation of messenger RNAs involved in protein degradation but also cell survival. Taken together, these results suggest that molecular pathways regulating protein homeostasis are altered during the evolution of NFT pathology in the NBM. These changes likely contribute to the disruption of protein turnover and neuronal survival of these vulnerable NBM neurons during the progression of AD.
PMCID:4973891
PMID: 27143424
ISSN: 1558-1497
CID: 2100832
Quantification of normal-appearing white matter tract integrity in multiple sclerosis: a diffusion kurtosis imaging study
de Kouchkovsky, Ivan; Fieremans, Els; Fleysher, Lazar; Herbert, Joseph; Grossman, Robert I; Inglese, Matilde
Our aim was to characterize the nature and extent of pathological changes in the normal-appearing white matter (NAWM) of patients with multiple sclerosis (MS) using novel diffusion kurtosis imaging-derived white matter tract integrity (WMTI) metrics and to investigate the association between these WMTI metrics and clinical parameters. Thirty-two patients with relapsing-remitting MS and 19 age- and gender-matched healthy controls underwent MRI and neurological examination. Maps of mean diffusivity, fractional anisotropy and WMTI metrics (intra-axonal diffusivity, axonal water fraction, tortuosity and axial and radial extra-axonal diffusivity) were created. Tract-based spatial statistics analysis was performed to assess for differences in the NAWM between patients and controls. A region of interest analysis of the corpus callosum was also performed to assess for group differences and to evaluate correlations between WMTI metrics and measures of disease severity. Mean diffusivity and radial extra-axonal diffusivity were significantly increased while fractional anisotropy, axonal water fraction, intra-axonal diffusivity and tortuosity were decreased in MS patients compared with controls (p values ranging from <0.001 to <0.05). Axonal water fraction in the corpus callosum was significantly associated with the expanded disability status scale score (rho = -0.39, p = 0.035). With the exception of the axial extra-axonal diffusivity, all metrics were correlated with the symbol digits modality test score (p values ranging from 0.001 to <0.05). WMTI metrics are thus sensitive to changes in the NAWM of MS patients and might provide a more pathologically specific, clinically meaningful and practical complement to standard diffusion tensor imaging-derived metrics.
PMCID:5369414
PMID: 27094571
ISSN: 1432-1459
CID: 2079962
Activation of local inhibitory circuits in the dentate gyrus by adult-born neurons
Drew, Liam J; Kheirbek, Mazen A; Luna, Victor M; Denny, Christine A; Cloidt, Megan A; Wu, Melody V; Jain, Swati; Scharfman, Helen E; Hen, Rene
Robust incorporation of new principal cells into pre-existing circuitry in the adult mammalian brain is unique to the hippocampal dentate gyrus (DG). We asked if adult-born granule cells (GCs) might act to regulate processing within the DG by modulating the substantially more abundant mature GCs. Optogenetic stimulation of a cohort of young adult-born GCs (0 to 7 weeks post-mitosis) revealed that these cells activate local GABAergic interneurons to evoke strong inhibitory input to mature GCs. Natural manipulation of neurogenesis by aging - to decrease it - and housing in an enriched environment - to increase it - strongly affected the levels of inhibition. We also demonstrated that elevating activity in adult-born GCs in awake behaving animals reduced the overall number of mature GCs activated by exploration. These data suggest that inhibitory modulation of mature GCs may be an important function of adult-born hippocampal neurons
PMCID:4867135
PMID: 26662922
ISSN: 1098-1063
CID: 1877832
Toward 20 T magnetic resonance for human brain studies: opportunities for discovery and neuroscience rationale
Budinger, Thomas F; Bird, Mark D; Frydman, Lucio; Long, Joanna R; Mareci, Thomas H; Rooney, William D; Rosen, Bruce; Schenck, John F; Schepkin, Victor D; Sherry, A Dean; Sodickson, Daniel K; Springer, Charles S; Thulborn, Keith R; Ugurbil, Kamil; Wald, Lawrence L
An initiative to design and build magnetic resonance imaging (MRI) and spectroscopy (MRS) instruments at 14 T and beyond to 20 T has been underway since 2012. This initiative has been supported by 22 interested participants from the USA and Europe, of which 15 are authors of this review. Advances in high temperature superconductor materials, advances in cryocooling engineering, prospects for non-persistent mode stable magnets, and experiences gained from large-bore, high-field magnet engineering for the nuclear fusion endeavors support the feasibility of a human brain MRI and MRS system with 1 ppm homogeneity over at least a 16-cm diameter volume and a bore size of 68 cm. Twelve neuroscience opportunities are presented as well as an analysis of the biophysical and physiological effects to be investigated before exposing human subjects to the high fields of 14 T and beyond.
PMCID:5538368
PMID: 27194154
ISSN: 1352-8661
CID: 2162002
Ultrasonic neuromodulation
Naor, Omer; Krupa, Steve; Shoham, Shy
Ultrasonic waves can be non-invasively steered and focused into mm-scale regions across the human body and brain, and their application in generating controlled artificial modulation of neuronal activity could therefore potentially have profound implications for neural science and engineering. Ultrasonic neuro-modulation phenomena were experimentally observed and studied for nearly a century, with recent discoveries on direct neural excitation and suppression sparking a new wave of investigations in models ranging from rodents to humans. In this paper we review the physics, engineering and scientific aspects of ultrasonic fields, their control in both space and time, and their effect on neuronal activity, including a survey of both the field's foundational history and of recent findings. We describe key constraints encountered in this field, as well as key engineering systems developed to surmount them. In closing, the state of the art is discussed, with an emphasis on emerging research and clinical directions.
PMID: 27153566
ISSN: 1741-2552
CID: 2515512