Searched for: school:SOM
Department/Unit:Neuroscience Institute
Alzheimer's Disease Has Its Origins in Early Life via a Perturbed Microbiome
Ginsberg, Stephen D; Blaser, Martin J
Alzheimer's disease (AD) is a neurodegenerative disorder with limited therapeutic options. Accordingly, new approaches for prevention and treatment are needed. One focus is the human microbiome, the consortium of microorganisms that live in and on us, which contributes to human immune, metabolic, and cognitive development and that may have mechanistic roles in neurodegeneration. AD and Alzheimer's disease-related dementias (ADRD) are recognized as spectrum disorders with complex pathobiology. AD/ADRD onset begins before overt clinical signs, but initiation triggers remain undefined. We posit that disruption of the normal gut microbiome in early life leads to a pathological cascade within septohippocampal and cortical brain circuits. We propose investigation to understand how early-life microbiota changes may lead to hallmark AD pathology in established AD/ADRD models. Specifically, we hypothesize that antibiotic exposure in early life leads to exacerbated AD-like disease endophenotypes that may be amenable to specific microbiological interventions. We propose suitable models for testing these hypotheses.
PMCID:11385592
PMID: 39255394
ISSN: 1537-6613
CID: 5690202
The primacy model and the structure of olfactory space
Giaffar, Hamza; Shuvaev, Sergey; Rinberg, Dmitry; Koulakov, Alexei A
Understanding sensory processing relies on the establishment of a consistent relationship between the stimulus space, its neural representation, and perceptual quality. In olfaction, the difficulty in establishing these links lies partly in the complexity of the underlying odor input space and perceptual responses. Based on the recently proposed primacy model for concentration invariant odor identity representation and a few assumptions, we have developed a theoretical framework for mapping the odor input space to the response properties of olfactory receptors. We analyze a geometrical structure containing odor representations in a multidimensional space of receptor affinities and describe its low-dimensional implementation, the primacy hull. We propose the implications of the primacy hull for the structure of feedforward connectivity in early olfactory networks. We test the predictions of our theory by comparing the existing receptor-ligand affinity and connectivity data obtained in the fruit fly olfactory system. We find that the Kenyon cells of the insect mushroom body integrate inputs from the high-affinity (primacy) sets of olfactory receptors in agreement with the primacy theory.
PMID: 39255274
ISSN: 1553-7358
CID: 5690192
Maternal choline supplementation rescues early endosome pathology in basal forebrain cholinergic neurons in the Ts65Dn mouse model of Down syndrome and Alzheimer's disease
Gautier, Megan K; Kelley, Christy M; Lee, Sang Han; Mufson, Elliott J; Ginsberg, Stephen D
Individuals with DS develop Alzheimer's disease (AD) neuropathology, including endosomal-lysosomal system abnormalities and degeneration of basal forebrain cholinergic neurons (BFCNs). We investigated whether maternal choline supplementation (MCS) affects early endosome pathology within BFCNs using the Ts65Dn mouse model of DS/AD. Ts65Dn and disomic (2N) offspring from dams administered MCS were analyzed for endosomal pathology at 3-4 months or 10-12 months. Morphometric analysis of early endosome phenotype was performed on individual BFCNs using Imaris. The effects of MCS on the endosomal interactome were interrogated by relative co-expression (RCE) analysis. MCS effectively reduced age- and genotype-associated increases in early endosome number in Ts65Dn and 2N offspring, and prevented increases in early endosome size in Ts65Dn offspring. RCE revealed a loss of interactome cooperativity among endosome genes in Ts65Dn offspring that was restored by MCS. These findings demonstrate MCS rescues early endosome pathology, a driver of septohippocampal circuit dysfunction. The genotype-independent benefits of MCS on endosomal phenotype indicate translational applicability as an early-life therapy for DS as well as other neurodevelopmental/neurodegenerative disorders involving endosomal pathology.
PMID: 39265450
ISSN: 1558-1497
CID: 5690632
An experimental system for detection and localization of hemorrhage using ultra-wideband microwaves with deep learning
Hedayati, Eisa; Safari, Fatemeh; Verghese, George; Ciancia, Vito R; Sodickson, Daniel K; Dehkharghani, Seena; Alon, Leeor
Stroke is a leading cause of mortality and disability. Emergent diagnosis and intervention are critical, and predicated upon initial brain imaging; however, existing clinical imaging modalities are generally costly, immobile, and demand highly specialized operation and interpretation. Low-energy microwaves have been explored as a low-cost, small form factor, fast, and safe probe for tissue dielectric properties measurements, with both imaging and diagnostic potential. Nevertheless, challenges inherent to microwave reconstruction have impeded progress, hence conduction of microwave imaging remains an elusive scientific aim. Herein, we introduce a dedicated experimental framework comprising a robotic navigation system to translate blood-mimicking phantoms within a human head model. An 8-element ultra-wideband array of modified antipodal Vivaldi antennas was developed and driven by a two-port vector network analyzer spanning 0.6-9.0 GHz at an operating power of 1 mW. Complex scattering parameters were measured, and dielectric signatures of hemorrhage were learned using a dedicated deep neural network for prediction of hemorrhage classes and localization. An overall sensitivity and specificity for detection >0.99 was observed, with Rayleigh mean localization error of 1.65 mm. The study establishes the feasibility of a robust experimental model and deep learning solution for ultra-wideband microwave stroke detection.
PMID: 39242634
ISSN: 2731-3395
CID: 5688452
Memory representations during slow change blindness
Frey, Haley G; Koenig, Lua; Block, Ned; He, Biyu J; Brascamp, Jan W
Classic change blindness is the phenomenon where seemingly obvious changes that coincide with visual disruptions (such as blinks or brief blanks) go unnoticed by an attentive observer. Some early work into the causes of classic change blindness suggested that any pre-change stimulus representation is overwritten by a representation of the altered post-change stimulus, preventing change detection. However, recent work revealed that, even when observers do maintain memory representations of both the pre- and post-change stimulus states, they can still miss the change, suggesting that change blindness can also arise from a failure to compare the stored representations. Here, we studied slow change blindness, a related phenomenon that occurs even in the absence of visual disruptions when the change occurs sufficiently slowly, to determine whether it could be explained by conclusions from classic change blindness. Across three different slow change blindness experiments we found that observers who consistently failed to notice the change had access to at least two memory representations of the changing display. One representation was precise but short lived: a detailed representation of the more recent stimulus states, but fragile. The other representation lasted longer but was fairly general: stable but too coarse to differentiate the various stages of the change. These findings suggest that, although multiple representations are formed, the failure to compare hypotheses might not explain slow change blindness; even if a comparison were made, the representations would be too sparse (longer term stores) or too fragile (short-lived stores) for such comparison to inform about the change.
PMCID:11401121
PMID: 39254964
ISSN: 1534-7362
CID: 5690182
Schwann Cell Development and Myelination
Salzer, James; Feltri, M Laura; Jacob, Claire
Glial cells in the peripheral nervous system (PNS), which arise from the neural crest, include axon-associated Schwann cells (SCs) in nerves, synapse-associated SCs at the neuromuscular junction, enteric glia, perikaryon-associated satellite cells in ganglia, and boundary cap cells at the border between the central nervous system (CNS) and the PNS. Here, we focus on axon-associated SCs. These SCs progress through a series of formative stages, which culminate in the generation of myelinating SCs that wrap large-caliber axons and of nonmyelinating (Remak) SCs that enclose multiple, small-caliber axons. In this work, we describe SC development, extrinsic signals from the axon and extracellular matrix (ECM) and the intracellular signaling pathways they activate that regulate SC development, and the morphogenesis and organization of myelinating SCs and the myelin sheath. We review the impact of SCs on the biology and integrity of axons and their emerging role in regulating peripheral nerve architecture. Finally, we explain how transcription and epigenetic factors control and fine-tune SC development and myelination.
PMID: 38503507
ISSN: 1943-0264
CID: 5640432
Climate change and its implications for kidney health
Goldfarb, David S; Patel, Anuj A
PURPOSE OF REVIEW/OBJECTIVE:Extremes of weather as a result of climate change are affecting social, economic and health systems. Kidney health is being threatened by global warming while treatment of kidney disease is contributing to increasing resource utilization and leaving a substantial carbon footprint. Improved physician awareness and patient education are needed to mitigate the risk. RECENT FINDINGS/RESULTS:Rising temperatures are changing kidney disease patterns, with increasing prevalence of acute kidney injury, chronic kidney disease and kidney stones. These issues disproportionately affect people suffering from social inequality and limited access to resources. SUMMARY/CONCLUSIONS:In this article, we review the effects of climate change on kidney stones, and acute and chronic kidney injury. Finally, we discuss the impact of renal replacement therapies on the environment and proposed ways to mitigate it.
PMID: 38881301
ISSN: 1473-6586
CID: 5671762
Compressed cerebro-cerebellar functional gradients in children and adolescents with attention-deficit/hyperactivity disorder
Cao, Qingquan; Wang, Pan; Zhang, Ziqian; Castellanos, F Xavier; Biswal, Bharat B
Both cortical and cerebellar developmental differences have been implicated in attention-deficit/hyperactivity disorder (ADHD). Recently accumulating neuroimaging studies have highlighted hierarchies as a fundamental principle of brain organization, suggesting the importance of assessing hierarchy abnormalities in ADHD. A novel gradient-based resting-state functional connectivity analysis was applied to investigate the cerebro-cerebellar disturbed hierarchy in children and adolescents with ADHD. We found that the interaction of functional gradient between diagnosis and age was concentrated in default mode network (DMN) and visual network (VN). At the same time, we also found that the opposite gradient changes of DMN and VN caused the compression of the cortical main gradient in ADHD patients, implicating the co-occurrence of both low- (visual processing) and high-order (self-related thought) cognitive dysfunction manifesting in abnormal cerebro-cerebellar organizational hierarchy in ADHD. Our study provides a neurobiological framework to better understand the co-occurrence and interaction of both low-level and high-level functional abnormalities in the cortex and cerebellum in ADHD.
PMCID:11386319
PMID: 39254180
ISSN: 1097-0193
CID: 5690162
Neuroinflammatory reactive astrocyte formation correlates with adverse outcomes in perinatal white matter injury
Renz, Patricia; Steinfort, Marel; Haesler, Valérie; Tscherrig, Vera; Huang, Eric J; Chavali, Manideep; Liddelow, Shane; Rowitch, David H; Surbek, Daniel; Schoeberlein, Andreina; Brosius Lutz, Amanda
Perinatal white matter injury (WMI) is the leading cause of long-term neurological morbidity in infants born preterm. Neuroinflammation during a critical window of early brain development plays a key role in WMI disease pathogenesis. The mechanisms linking inflammation with the long-term myelination failure that characterizes WMI, however, remain unknown. Here, we investigate the role of astrocyte reactivity in WMI. In an experimental mouse model of WMI, we demonstrate that WMI disease outcomes are improved in mutant mice lacking secretion of inflammatory molecules TNF-α, IL-1α, and C1q known, in addition to other roles, to induce the formation of a neuroinflammatory reactive astrocyte substate. We show that astrocytes express molecular signatures of the neuroinflammatory reactive astrocyte substate in both our WMI mouse model and human tissue affected by WMI, and that this gene expression pattern is dampened in injured mutant mice. Our data provide evidence that a neuroinflammatory reactive astrocyte substate correlates with adverse WMI disease outcomes, thus highlighting the need for further investigation of these cells as potential causal players in WMI pathology.
PMID: 38924630
ISSN: 1098-1136
CID: 5723372
Multifocal microscopy for functional imaging of neural systems
Meitav, Nizan; Brosh, Inbar; Freifeld, Limor; Shoham, Shy
SIGNIFICANCE/UNASSIGNED:Rapid acquisition of large imaging volumes with microscopic resolution is an essential unmet need in biological research, especially for monitoring rapid dynamical processes such as fast activity in distributed neural systems. AIM/UNASSIGNED:We present a multifocal strategy for fast, volumetric, diffraction-limited resolution imaging over relatively large and scalable fields of view (FOV) using single-camera exposures. APPROACH/UNASSIGNED:Our multifocal microscopy approach leverages diffraction to image multiple focal depths simultaneously. It is based on a custom-designed diffractive optical element suited to low magnification and large FOV applications and customized prisms for chromatic correction, allowing for wide bandwidth fluorescence imaging. We integrate this system within a conventional microscope and demonstrate that our design can be used flexibly with a variety of magnification/numerical aperture (NA) objectives. RESULTS/UNASSIGNED: CONCLUSIONS/UNASSIGNED:Our study demonstrates the advantage of diffraction-based multifocal imaging techniques for 3D imaging of mm-scale objects from a single-camera exposure, with important applications in functional neural imaging and other areas benefiting from volumetric imaging.
PMCID:11407684
PMID: 39290443
ISSN: 2329-423x
CID: 5720732