Searched for: school:SOM
Department/Unit:Neuroscience Institute
The maternal interleukin-17a pathway in mice promotes autismlike phenotypes in offspring
Choi, Gloria B; Yim, Yeong S; Wong, Helen; Kim, Sangdoo; Kim, Hyunju; Kim, Sangwon V; Hoeffer, Charles A; Littman, Dan R; Huh, Jun R
Viral infection during pregnancy has been correlated with increased frequency of autism spectrum disorder (ASD) in offspring. This observation has been modeled in rodents subjected to maternal immune activation (MIA). The immune cell populations critical in the MIA model have not been identified. Using both genetic mutants and blocking antibodies in mice, we show that retinoic acid receptor-related orphan nuclear receptor gammat (RORgammat)-dependent effector T lymphocytes [e.g., T helper 17 (TH17) cells] and the effector cytokine interleukin-17a (IL-17a) are required in mothers for MIA-induced behavioral abnormalities in offspring. We find that MIA induces an abnormal cortical phenotype, which is also dependent on maternal IL-17a, in the fetal brain. Our data suggest that therapeutic targeting of TH17 cells in susceptible pregnant mothers may reduce the likelihood of bearing children with inflammation-induced ASD-like phenotypes.
PMCID:4782964
PMID: 26822608
ISSN: 1095-9203
CID: 1929712
Disruption of ATP-sensitive potassium channel function in skeletal muscles promotes production and secretion of musclin Condensed title: Skeletal muscle I regulates musclin
Sierra, Ana; Subbotina, Ekaterina; Zhu, Zhiyong; Gao, Zhan; Koganti, Siva Rama Krishna; Coetzee, William; Goldhamer, David; Hodgson-Zingman, Denice M; Zingman, Leonid V
Sarcolemmal ATP-sensitive potassium (KATP) channels control skeletal muscle energy use through their ability to adjust membrane excitability and related cell functions in accordance with cellular metabolic status. Mice with disrupted skeletal muscle KATP channels exhibit reduced adipocyte size and increased fatty acid release into the circulation. As yet, the molecular mechanisms underlying this link between skeletal muscle KATP channel function and adipose mobilization have not been established. Here, we demonstrate that skeletal muscle-specific disruption of KATP channel function in transgenic (TG) mice promotes production and secretion of musclin. Musclin is a myokine with high homology to atrial natriuretic peptide (ANP) that enhances ANP signaling by competing for elimination. Augmented musclin production in TG mice is driven by a molecular cascade resulting in enhanced acetylation and nuclear exclusion of the transcription factor forkhead box O1 (FOXO1) - an inhibitor of transcription of the musclin encoding gene. Musclin production/secretion in TG is paired with increased mobilization of fatty acids and a clear trend toward increased circulating ANP, an activator of lipolysis. These data establish KATP channel-dependent musclin production as a potential mechanistic link coupling "local" skeletal muscle energy consumption with mobilization of bodily resources from fat. Understanding such mechanisms is an important step toward designing interventions to manage metabolic disorders including those related to excess body fat and associated co-morbidities.
PMCID:4815902
PMID: 26828268
ISSN: 1090-2104
CID: 1932962
A Distributed Network for Social Cognition Enriched for Oxytocin Receptors
Mitre, Mariela; Marlin, Bianca J; Schiavo, Jennifer K; Morina, Egzona; Norden, Samantha E; Hackett, Troy A; Aoki, Chiye J; Chao, Moses V; Froemke, Robert C
Oxytocin is a neuropeptide important for social behaviors such as maternal care and parent-infant bonding. It is believed that oxytocin receptor signaling in the brain is critical for these behaviors, but it is unknown precisely when and where oxytocin receptors are expressed or which neural circuits are directly sensitive to oxytocin. To overcome this challenge, we generated specific antibodies to the mouse oxytocin receptor and examined receptor expression throughout the brain. We identified a distributed network of female mouse brain regions for maternal behaviors that are especially enriched for oxytocin receptors, including the piriform cortex, the left auditory cortex, and CA2 of the hippocampus. Electron microscopic analysis of the cerebral cortex revealed that oxytocin receptors were mainly expressed at synapses, as well as on axons and glial processes. Functionally, oxytocin transiently reduced synaptic inhibition in multiple brain regions and enabled long-term synaptic plasticity in the auditory cortex. Thus modulation of inhibition may be a general mechanism by which oxytocin can act throughout the brain to regulate parental behaviors and social cognition. SIGNIFICANCE STATEMENT: Oxytocin is an important peptide hormone involved in maternal behavior and social cognition, but it has been unclear what elements of neural circuits express oxytocin receptors due to the paucity of suitable antibodies. Here, we developed new antibodies to the mouse oxytocin receptor. Oxytocin receptors were found in discrete brain regions and at cortical synapses for modulating excitatory-inhibitory balance and plasticity. These antibodies should be useful for future studies of oxytocin and social behavior.
PMCID:4764667
PMID: 26911697
ISSN: 1529-2401
CID: 1964812
Pathophysiological implication of CaV3.1 T-type Ca2+ channels in trigeminal neuropathic pain
Choi, Soonwook; Yu, Eunah; Hwang, Eunjin; Llinas, Rodolfo R
A crucial pathophysiological issue concerning central neuropathic pain is the modification of sensory processing by abnormally increased low-frequency brain rhythms. Here we explore the molecular mechanisms responsible for such abnormal rhythmicity and its relation to neuropathic pain syndrome. Toward this aim, we investigated the behavioral and electrophysiological consequences of trigeminal neuropathic pain following infraorbital nerve ligations in CaV3.1 T-type Ca(2+) channel knockout and wild-type mice. CaV3.1 knockout mice had decreased mechanical hypersensitivity and reduced low-frequency rhythms in the primary somatosensory cortex and related thalamic nuclei than wild-type mice. Lateral inhibition of gamma rhythm in primary somatosensory cortex layer 4, reflecting intact sensory contrast, was present in knockout mice but severely impaired in wild-type mice. Moreover, cross-frequency coupling between low-frequency and gamma rhythms, which may serve in sensory processing, was pronounced in wild-type mice but not in CaV3.1 knockout mice. Our results suggest that the presence of CaV3.1 channels is a key element in the pathophysiology of trigeminal neuropathic pain.
PMCID:4776481
PMID: 26858455
ISSN: 1091-6490
CID: 1964612
Resolving rates of mutation in the brain using single-neuron genomics
Evrony, Gilad D; Lee, Eunjung; Park, Peter J; Walsh, Christopher A
Whether somatic mutations contribute functional diversity to brain cells is a long-standing question. Single-neuron genomics enables direct measurement of somatic mutation rates in human brain and promises to answer this question. A recent study (Upton et al., 2015) reported high rates of somatic LINE-1 element (L1) retrotransposition in the hippocampus and cerebral cortex that would have major implications for normal brain function, and suggested that these events preferentially impact genes important for neuronal function. We identify aspects of the single-cell sequencing approach, bioinformatic analysis, and validation methods that led to thousands of artifacts being interpreted as somatic mutation events. Our reanalysis supports a mutation frequency of approximately 0.2 events per cell, which is about fifty-fold lower than reported, confirming that L1 elements mobilize in some human neurons but indicating that L1 mosaicism is not ubiquitous. Through consideration of the challenges identified, we provide a foundation and framework for designing single-cell genomics studies.
PMID: 26901440
ISSN: 2050-084x
CID: 3332562
Sequential ionic and conformational signaling by calcium channels drives neuronal gene expression
Li, Boxing; Tadross, Michael R; Tsien, Richard W
Voltage-gated CaV1.2 channels (L-type calcium channel alpha1C subunits) are critical mediators of transcription-dependent neural plasticity. Whether these channels signal via the influx of calcium ion (Ca(2+)), voltage-dependent conformational change (VDeltaC), or a combination of the two has thus far been equivocal. We fused CaV1.2 to a ligand-gated Ca(2+)-permeable channel, enabling independent control of localized Ca(2+) and VDeltaC signals. This revealed an unexpected dual requirement: Ca(2+) must first mobilize actin-bound Ca(2+)/calmodulin-dependent protein kinase II, freeing it for subsequent VDeltaC-mediated accumulation. Neither signal alone sufficed to activate transcription. Signal order was crucial: Efficiency peaked when Ca(2+) preceded VDeltaC by 10 to 20 seconds. CaV1.2 VDeltaC synergistically augmented signaling by N-methyl-d-aspartate receptors. Furthermore, VDeltaC mistuning correlated with autistic symptoms in Timothy syndrome. Thus, nonionic VDeltaC signaling is vital to the function of CaV1.2 in synaptic and neuropsychiatric processes.
PMCID:5467645
PMID: 26912895
ISSN: 1095-9203
CID: 1964842
Parkinson's Disease: A Thalamostriatal Rebalancing Act?
Tritsch, Nicolas X; Carter, Adam G
Motor impairments in Parkinson's disease are thought to result from hypoactivation of striatal projection neurons in the direct pathway. In this issue of Neuron, Parker et al. (2016) report that dopamine depletion selectively weakens thalamic but not cortical afferents onto these neurons, implicating the thalamus as playing a key role in Parkinsonian motor symptoms.
PMID: 26889806
ISSN: 1097-4199
CID: 1949782
Acceptance of evidence-supported hypotheses generates a stronger signal from an underlying functionally-connected network
Whitman, J C; Takane, Y; Cheung, T P L; Moiseev, A; Ribary, U; Ward, L M; Woodward, T S
Choosing one's preferred hypothesis requires multiple brain regions to work in concert as a functionally connected network. We predicted that a stronger network signal would underlie cognitive coherence between a hypothesis and the available evidence. In order to identify such functionally connected networks in magnetoencephalography (MEG) data, we first localized the generators of changes in oscillatory power within three frequency bands, namely alpha (7-13 Hz), beta (18-24 Hz), and theta (3-7 Hz), with a spatial resolution of 5mm and temporal resolution of 50 ms. We then used principal component analysis (PCA) to identify functionally connected networks reflecting co-varying post-stimulus changes in power. As predicted, PCA revealed a functionally connected network with a stronger signal when the evidence supported accepting the hypothesis being judged. This difference was driven by beta-band power decreases in the left dorsolateral prefrontal cortex (DLPFC), ventromedial prefrontal cortex (VMPFC), posterior cingulate cortex (PCC), and midline occipital cortex.
PMID: 26702776
ISSN: 1095-9572
CID: 2409122
First translational 'Think Tank' on cerebrovascular disease, cognitive impairment and dementia
Barone, Frank C; Gustafson, Deborah; Crystal, Howard A; Moreno, Herman; Adamski, Mateusz G; Arai, Ken; Baird, Alison E; Balucani, Clotilde; Brickman, Adam M; Cechetto, David; Gorelick, Philip; Biessels, Geert Jan; Kiliaan, Amanda; Launer, Lenore; Schneider, Julie; Sorond, Farzaneh A; Whitmer, Rachel; Wright, Clinton; Zhang, Zheng Gang
As the human population continues to age, an increasing number of people will exhibit significant deficits in cognitive function and dementia. It is now recognized that cerebrovascular, metabolic and neurodegenerative diseases all play major roles in the evolution of cognitive impairment and dementia. Thus with our more recent recognition of these relationships and our need to understand and more positively impact on this world health problem, "The Leo and Anne Albert Charitable Trust" (Gene Pranzo, Trustee with significant support from Susan Brogan, Meeting Planner) provided generous support for this inaugural international workshop that was held from April 13-16, 2015 at the beautiful Ritz Carlton Golf Resort in North Naples, Florida. Researchers from SUNY Downstate Medical Center, Brooklyn, NY organized the event by selecting the present group of translationally inclined preclinical, clinical and population scientists focused on cerebrovascular disease (CVD) risk and its progression to vascular cognitive impairment (VCI) and dementia. Participants at the workshop addressed important issues related to aging, cognition and dementia by: (1) sharing new data, information and perspectives that intersect vascular, metabolic and neurodegenerative diseases, (2) discussing gaps in translating population risk, clinical and preclinical information to the progression of cognitive loss, and (3) debating new approaches and methods to fill these gaps that can translate into future therapeutic interventions. Participants agreed on topics for group discussion prior to the meeting and focused on specific translational goals that included promoting better understanding of dementia mechanisms, the identification of potential therapeutic targets for intervention, and discussed/debated the potential utility of diagnostic/prognostic markers. Below summarizes the new data-presentations, concepts, novel directions and specific discussion topics addressed by this international translational team at our "First Leo and Anne Albert Charitable Trust 'Think Tank' VCI workshop".
PMCID:4752794
PMID: 26873444
ISSN: 1479-5876
CID: 4945432
The Forebrain Song System Mediates Predictive Call Timing in Female and Male Zebra Finches
Benichov, Jonathan I; Benezra, Sam E; Vallentin, Daniela; Globerson, Eitan; Long, Michael A; Tchernichovski, Ofer
The dichotomy between vocal learners and non-learners is a fundamental distinction in the study of animal communication. Male zebra finches (Taeniopygia guttata) are vocal learners that acquire a song resembling their tutors', whereas females can only produce innate calls. The acoustic structure of short calls, produced by both males and females, is not learned. However, these calls can be precisely coordinated across individuals. To examine how birds learn to synchronize their calls, we developed a vocal robot that exchanges calls with a partner bird. Because birds answer the robot with stereotyped latencies, we could program it to disrupt each bird's responses by producing calls that are likely to coincide with the bird's. Within minutes, the birds learned to avoid this disruptive masking (jamming) by adjusting the timing of their responses. Notably, females exhibited greater adaptive timing plasticity than males. Further, when challenged with complex rhythms containing jamming elements, birds dynamically adjusted the timing of their calls in anticipation of jamming. Blocking the song system cortical output dramatically reduced the precision of birds' response timing and abolished their ability to avoid jamming. Surprisingly, we observed this effect in both males and females, indicating that the female song system is functional rather than vestigial. We suggest that descending forebrain projections, including the song-production pathway, function as a general-purpose sensorimotor communication system. In the case of calls, it enables plasticity in vocal timing to facilitate social interactions, whereas in the case of songs, plasticity extends to developmental changes in vocal structure.
PMCID:4747672
PMID: 26774786
ISSN: 1879-0445
CID: 1921892