Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14040


Lysosomal dysfunction in Down syndrome and Alzheimer mouse models is caused by v-ATPase inhibition by Tyr682-phosphorylated APP βCTF

Im, Eunju; Jiang, Ying; Stavrides, Philip H; Darji, Sandipkumar; Erdjument-Bromage, Hediye; Neubert, Thomas A; Choi, Jun Yong; Wegiel, Jerzy; Lee, Ju-Hyun; Nixon, Ralph A
Lysosome dysfunction arises early and propels Alzheimer's disease (AD). Herein, we show that amyloid precursor protein (APP), linked to early-onset AD in Down syndrome (DS), acts directly via its β-C-terminal fragment (βCTF) to disrupt lysosomal vacuolar (H+)-adenosine triphosphatase (v-ATPase) and acidification. In human DS fibroblasts, the phosphorylated 682YENPTY internalization motif of APP-βCTF binds selectively within a pocket of the v-ATPase V0a1 subunit cytoplasmic domain and competitively inhibits association of the V1 subcomplex of v-ATPase, thereby reducing its activity. Lowering APP-βCTF Tyr682 phosphorylation restores v-ATPase and lysosome function in DS fibroblasts and in vivo in brains of DS model mice. Notably, lowering APP-βCTF Tyr682 phosphorylation below normal constitutive levels boosts v-ATPase assembly and activity, suggesting that v-ATPase may also be modulated tonically by phospho-APP-βCTF. Elevated APP-βCTF Tyr682 phosphorylation in two mouse AD models similarly disrupts v-ATPase function. These findings offer previously unknown insight into the pathogenic mechanism underlying faulty lysosomes in all forms of AD.
PMCID:10371027
PMID: 37494443
ISSN: 2375-2548
CID: 5592302

Macrophage-to-endothelial cell crosstalk by the cholesterol metabolite 27HC promotes atherosclerosis in male mice

Yu, Liming; Xu, Lin; Chu, Haiyan; Peng, Jun; Sacharidou, Anastasia; Hsieh, Hsi-Hsien; Weinstock, Ada; Khan, Sohaib; Ma, Liqian; Durán, José Gabriel Barcia; McDonald, Jeffrey; Nelson, Erik R; Park, Sunghee; McDonnell, Donald P; Moore, Kathryn J; Huang, Lily Jun-Shen; Fisher, Edward A; Mineo, Chieko; Huang, Linzhang; Shaul, Philip W
Hypercholesterolemia and vascular inflammation are key interconnected contributors to the pathogenesis of atherosclerosis. How hypercholesterolemia initiates vascular inflammation is poorly understood. Here we show in male mice that hypercholesterolemia-driven endothelial activation, monocyte recruitment and atherosclerotic lesion formation are promoted by a crosstalk between macrophages and endothelial cells mediated by the cholesterol metabolite 27-hydroxycholesterol (27HC). The pro-atherogenic actions of macrophage-derived 27HC require endothelial estrogen receptor alpha (ERα) and disassociation of the cytoplasmic scaffolding protein septin 11 from ERα, leading to extranuclear ERα- and septin 11-dependent activation of NF-κB. Furthermore, pharmacologic inhibition of cyp27a1, which generates 27HC, affords atheroprotection by reducing endothelial activation and monocyte recruitment. These findings demonstrate cell-to-cell communication by 27HC, and identify a major causal linkage between the hypercholesterolemia and vascular inflammation that partner to promote atherosclerosis. Interventions interrupting this linkage may provide the means to blunt vascular inflammation without impairing host defense to combat the risk of atherosclerotic cardiovascular disease that remains despite lipid-lowering therapies.
PMCID:10368733
PMID: 37491347
ISSN: 2041-1723
CID: 5592122

Measuring the Effect of Ice Thickness and Microscope Configuration on Resolution in Single Particle Cryo-EM

Chua, Eugene Y D; Neselu, Kasahun; Wang, Bing; Rice, William J; Potter, Clinton S; Carragher, Bridget
PMID: 37613233
ISSN: 1435-8115
CID: 5598692

Comprehensive analysis of intercellular communication in the thermogenic adipose niche

Shamsi, Farnaz; Zheng, Rongbin; Ho, Li-Lun; Chen, Kaifu; Tseng, Yu-Hua
Brown adipose tissue (BAT) is responsible for regulating body temperature through adaptive thermogenesis. The ability of thermogenic adipocytes to dissipate chemical energy as heat counteracts weight gain and has gained considerable attention as a strategy against obesity. BAT undergoes major remodeling in a cold environment. This remodeling results from changes in the number and function of brown adipocytes, expanding the network of blood vessels and sympathetic nerves, and changes in the composition and function of immune cells. Such synergistic adaptation requires extensive crosstalk between individual cells in the tissue to coordinate their responses. To understand the mechanisms of intercellular communication in BAT, we apply the CellChat algorithm to single-cell transcriptomic data of mouse BAT. We construct an integrative network of the ligand-receptor interactome in BAT and identify the major signaling inputs and outputs of each cell type. By comparing the ligand-receptor interactions in BAT of mice housed at different environmental temperatures, we show that cold exposure enhances the intercellular interactions among the major cell types in BAT, including adipocytes, adipocyte progenitors, lymphatic and vascular endothelial cells, myelinated and non-myelinated Schwann cells, and immune cells. These interactions are predicted to regulate the remodeling of the extracellular matrix, the inflammatory response, angiogenesis, and neurite growth. Together, our integrative analysis of intercellular communications in BAT and their dynamic regulation in response to housing temperatures provides a new understanding of the mechanisms underlying BAT thermogenesis. The resources presented in this study offer a valuable platform for future investigations of BAT development and thermogenesis.
PMCID:10361964
PMID: 37479789
ISSN: 2399-3642
CID: 5536252

Systematic mapping and modeling of 3D enhancer-promoter interactions in early mouse embryonic lineages reveal regulatory principles that determine the levels and cell-type specificity of gene expression

Murphy, Dylan; Salataj, Eralda; Di Giammartino, Dafne Campigli; Rodriguez-Hernaez, Javier; Kloetgen, Andreas; Garg, Vidur; Char, Erin; Uyehara, Christopher M; Ee, Ly-Sha; Lee, UkJin; Stadtfeld, Matthias; Hadjantonakis, Anna-Katerina; Tsirigos, Aristotelis; Polyzos, Alexander; Apostolou, Effie
Mammalian embryogenesis commences with two pivotal and binary cell fate decisions that give rise to three essential lineages, the trophectoderm (TE), the epiblast (EPI) and the primitive endoderm (PrE). Although key signaling pathways and transcription factors that control these early embryonic decisions have been identified, the non-coding regulatory elements via which transcriptional regulators enact these fates remain understudied. To address this gap, we have characterized, at a genome-wide scale, enhancer activity and 3D connectivity in embryo-derived stem cell lines that represent each of the early developmental fates. We observed extensive enhancer remodeling and fine-scale 3D chromatin rewiring among the three lineages, which strongly associate with transcriptional changes, although there are distinct groups of genes that are irresponsive to topological changes. In each lineage, a high degree of connectivity or "hubness" positively correlates with levels of gene expression and enriches for cell-type specific and essential genes. Genes within 3D hubs also show a significantly stronger probability of coregulation across lineages, compared to genes in linear proximity or within the same contact domains. By incorporating 3D chromatin features, we build a novel predictive model for transcriptional regulation (3D-HiChAT), which outperformed models that use only 1D promoter or proximal variables in predicting levels and cell-type specificity of gene expression. Using 3D-HiChAT, we performed genome-wide in silico perturbations to nominate candidate functional enhancers and hubs in each cell lineage, and with CRISPRi experiments we validated several novel enhancers that control expression of one or more genes in their respective lineages. Our study comprehensively identifies 3D regulatory hubs associated with the earliest mammalian lineages and describes their relationship to gene expression and cell identity, providing a framework to understand lineage-specific transcriptional behaviors.
PMCID:10422694
PMID: 37577543
ISSN: 2692-8205
CID: 5728142

Tumor-intrinsic LKB1-LIF signaling axis establishes a myeloid niche to promote immune evasion and tumor growth

Rashidfarrokhi, Ali; Pillai, Ray; Hao, Yuan; Wu, Warren L; Karadal-Ferrena, Burcu; Dimitriadoy, Sofia G; Cross, Michael; Yeaton, Anna H; Huang, Shih Ming; Bhutkar, Arjun J; Herrera, Alberto; Rajalingam, Sahith; Hayashi, Makiko; Huang, Kuan-Lin; Bartnicki, Eric; Zavitsanou, Anastasia-Maria; Wohlhieter, Corrin A; Leboeuf, Sarah E; Chen, Ting; Loomis, Cynthia; Mezzano, Valeria; Kulicke, Ruth; Davis, Fred P; Stransky, Nicolas; Smolen, Gromoslaw A; Rudin, Charles M; Moreira, Andre L; Khanna, Kamal M; Pass, Harvey I; Wong, Kwok-Kin; Koide, Shohei; Tsirigos, Aristotelis; Koralov, Sergei B; Papagiannakopoulos, Thales
Tumor mutations can influence the surrounding microenvironment leading to suppression of anti-tumor immune responses and thereby contributing to tumor progression and failure of cancer therapies. Here we use genetically engineered lung cancer mouse models and patient samples to dissect how LKB1 mutations accelerate tumor growth by reshaping the immune microenvironment. Comprehensive immune profiling of LKB1 -mutant vs wildtype tumors revealed dramatic changes in myeloid cells, specifically enrichment of Arg1 + interstitial macrophages and SiglecF Hi neutrophils. We discovered a novel mechanism whereby autocrine LIF signaling in Lkb1 -mutant tumors drives tumorigenesis by reprogramming myeloid cells in the immune microenvironment. Inhibiting LIF signaling in Lkb1 -mutant tumors, via gene targeting or with a neutralizing antibody, resulted in a striking reduction in Arg1 + interstitial macrophages and SiglecF Hi neutrophils, expansion of antigen specific T cells, and inhibition of tumor progression. Thus, targeting LIF signaling provides a new therapeutic approach to reverse the immunosuppressive microenvironment of LKB1 -mutant tumors.
PMCID:10370066
PMID: 37502974
ISSN: 2692-8205
CID: 5743132

mRNA lipid nanoparticle-mediated pyroptosis sensitizes immunologically cold tumors to checkpoint immunotherapy

Li, Fengqiao; Zhang, Xue-Qing; Ho, William; Tang, Maoping; Li, Zhongyu; Bu, Lei; Xu, Xiaoyang
Synergistically improving T-cell responsiveness is promising for favorable therapeutic outcomes in immunologically cold tumors, yet current treatments often fail to induce a cascade of cancer-immunity cycle for effective antitumor immunity. Gasdermin-mediated pyroptosis is a newly discovered mechanism in cancer immunotherapy; however, cleavage in the N terminus is required to activate pyroptosis. Here, we report a single-agent mRNA nanomedicine-based strategy that utilizes mRNA lipid nanoparticles (LNPs) encoding only the N-terminus of gasdermin to trigger pyroptosis, eliciting robust antitumor immunity. In multiple female mouse models, we show that pyroptosis-triggering mRNA/LNPs turn cold tumors into hot ones and create a positive feedback loop to promote antitumor immunity. Additionally, mRNA/LNP-induced pyroptosis sensitizes tumors to anti-PD-1 immunotherapy, facilitating tumor growth inhibition. Antitumor activity extends beyond the treated lesions and suppresses the growth of distant tumors. We implement a strategy for inducing potent antitumor immunity, enhancing immunotherapy responses in immunologically cold tumors.
PMCID:10349854
PMID: 37454146
ISSN: 2041-1723
CID: 5535342

A tale of two inhibitors: diarylquinolines and squaramides

Chen, James; Ekiert, Damian C
The diarylquinoline bedaquiline (BDQ) is an FDA-approved drug for the treatment of multidrug-resistant tuberculosis that targets the mycobacterial adenosine triphosphate (ATP) synthase, a key enzyme in cellular respiration. In a recent study, Courbon et al (2023) examine the interaction between Mycobacterium smegmatis ATP synthase with the second generation diarylquinoline TBAJ-876 and the squaramide inhibitor SQ31f, showing that both drugs prevent the rotatory motions needed for enzymatic function.
PMID: 37435707
ISSN: 1460-2075
CID: 5537602

Metformin regulates bone marrow stromal cells to accelerate bone healing in diabetic mice

Guo, Yuqi; Wei, Jianlu; Liu, Chuanju; Li, Xin; Yan, Wenbo
Diabetes mellitus is a group of chronic diseases characterized by high blood glucose levels. Diabetic patients have a higher risk of sustaining osteoporotic fractures than non-diabetic people. The fracture healing is usually impaired in diabetics, and our understanding of the detrimental effects of hyperglycemia on fracture healing is still inadequate. Metformin is the first-line medicine for type 2 diabetes (T2D). However, its effects on bone in T2D patients remain to be studied. To assess the impacts of metformin on fracture healing, we compared the healing process of closed-wound fixed fracture, non-fixed radial fracture, and femoral drill-hole injury models in the T2D mice with and without metformin treatment. Our results demonstrated that metformin rescued the delayed bone healing and remolding in the T2D mice in all injury models. In vitro analysis indicated that compromised proliferation, osteogenesis, chondrogenesis of the bone marrow stromal cells (BMSCs) derived from the T2D mice were rescued by metformin treatment when compared to WT controls. Furthermore, metformin could effectively rescue the impaired detrimental lineage commitment of BMSCs isolated from the T2D mice in vivo as assessed by subcutaneous ossicle formation of the BMSC implants in recipient T2D mice. Moreover, the Safranin O staining of cartilage formation in the endochondral ossification under hyperglycemic condition significantly increased at day 14 post-fracture in the T2D mice receiving metformin treatment. The chondrocyte transcript factors SOX9 and PGC1α, important to maintain chondrocyte homeostasis, were both significantly upregulated in callus tissue isolated at the fracture site of metformin-treated MKR mice on day 12 post-fracture. Metformin also rescued the chondrocyte disc formation of BMSCs isolated from the T2D mice. Taken together, our study demonstrated that metformin facilitated bone healing, more specifically bone formation and chondrogenesis in T2D mouse models.
PMID: 37417730
ISSN: 2050-084x
CID: 5535222

Author Correction: Single-cell RNA sequencing reveals the effects of chemotherapy on human pancreatic adenocarcinoma and its tumor microenvironment

Werba, Gregor; Weissinger, Daniel; Kawaler, Emily A; Zhao, Ende; Kalfakakou, Despoina; Dhara, Surajit; Wang, Lidong; Lim, Heather B; Oh, Grace; Jing, Xiaohong; Beri, Nina; Khanna, Lauren; Gonda, Tamas; Oberstein, Paul; Hajdu, Cristina; Loomis, Cynthia; Heguy, Adriana; Sherman, Mara H; Lund, Amanda W; Welling, Theodore H; Dolgalev, Igor; Tsirigos, Aristotelis; Simeone, Diane M
PMID: 37400453
ISSN: 2041-1723
CID: 5539082