Searched for: school:SOM
Department/Unit:Neuroscience Institute
Application of Systems Theory in Longitudinal Studies on the Origin and Progression of Alzheimer's Disease
Lista, Simone; Khachaturian, Zaven S; Rujescu, Dan; Garaci, Francesco; Dubois, Bruno; Hampel, Harald
This chapter questions the prevailing "implicit" assumption that molecular mechanisms and the biological phenotype of dominantly inherited early-onset alzheimer's disease (EOAD) could serve as a linear model to study the pathogenesis of sporadic late-onset alzheimer's disease (LOAD). Now there is growing evidence to suggest that such reductionism may not be warranted; these suppositions are not adequate to explain the molecular complexities of LOAD. For example, the failure of some recent amyloid-centric clinical trials, which were largely based on the extrapolations from EOAD biological phenotypes to the molecular mechanisms in the pathogenesis of LOAD, might be due to such false assumptions. The distinct difference in the biology of LOAD and EOAD is underscored by the presence of EOAD cases without evidence of familial clustering or Mendelian transmission and, conversely, the discovery and frequent reports of such clustering and transmission patterns in LOAD cases. The primary thesis of this chapter is that a radically different way of thinking is required for comprehensive explanations regarding the distinct complexities in the molecular pathogenesis of inherited and sporadic forms of Alzheimer's disease (AD). We propose using longitudinal analytical methods and the paradigm of systems biology (using transcriptomics, proteomics, metabolomics, and lipidomics) to provide us a more comprehensive insight into the lifelong origin and progression of different molecular mechanisms and neurodegeneration. Such studies should aim to clarify the role of specific pathophysiological and signaling pathways such as neuroinflammation, altered lipid metabolism, apoptosis, oxidative stress, tau hyperphosphorylation, protein misfolding, tangle formation, and amyloidogenic cascade leading to overproduction and reduced clearance of aggregating amyloid-beta (Abeta) species. A more complete understanding of the distinct difference in molecular mechanisms, signaling pathways, as well as comparability of the various forms of AD is of paramount importance. The development of knowledge and technologies for early detection and characterization of the disease across all stages will improve the predictions regarding the course of the disease, prognosis, and response to treatment. No doubt such advances will have a significant impact on the clinical management of both EOAD and LOAD patients. The approach propped here, combining longitudinal studies with the systems biology paradigm, will create a more effective and comprehensive framework for development of prevention therapies in AD.
PMID: 26235059
ISSN: 1940-6029
CID: 1744202
Hippocampal gene expression patterns in a mouse model of Down Syndrome (Ts65Dn) following maternal choline supplementation (MCS) [Meeting Abstract]
Alldred, MJ; Chao, HM; Lee, SH; Beilin, J; Petkova, E; Ginsberg, SD
ORIGINAL:0011762
ISSN: 1558-3635
CID: 2479152
Sleep and meal time misalignment alters intrinsic functional connectivity: A pilot resting state study [Meeting Abstract]
Yoncheva, Y N; Castellanos, F X; Pizinger, T; Kovtun, K; St-Onge, M
Introduction: Delayed sleep and meal timing promote metabolic dysregulation and obesity. Altered coordination of sleep and eating may impact food reward valuation in the brain; yet the independent and collective contribution of sleep and meal times remains unknown. This pilot, randomized crossover study manipulates both sleep and meal times while preserving normal sleep duration (8 h time in bed for 5 nights) to test how misalignment of sleeping and eating behaviors affects intrinsic functional connectivity (iFC) across reward and interoception-related brain circuitry. Methods: Resting state functional MRI scans (3T Siemens Skyra; TR = 2.5s; 2 x ~5-minute runs) were obtained for 4 participants (3 males; 25.3 +/- 4.6 years) who completed all 4 phases (normal sleep/normal meal; late sleep/normal meal; normal sleep/late meal; late sleep/late meal). Normal meal times were 1, 5, 11, and 12.5 h after awakening and late meal times were 4.5, 8.5, 14.5 and 16 h after awakening. For a priori selected regions-of-interest (seeds) relevant to food reward and interoception, each seed's iFC was calculated as the correlation between its time-series and that of every voxel, and then contrasted between conditions. Standard preprocessing and seed-based correlations used the Configurable Pipeline for the Analysis of Connectomes v0.3.9. Results: Statistically significant (p late) additionally significantly modulated iFC between left ventral striatum and precuneus. Other significant iFC modulations of components of reward and interoception circuitry will also be presented. Conclusion: These pilot findings provide support that misalignment of sleep and food timing alters iFC in regions relevant to food reward and interoception, motivating examination in a larger sample
EMBASE:72303028
ISSN: 1550-9109
CID: 2153012
Attention deficit hyperactivity disorder
Chapter by: Swanson, JM; Sergeant, JA; Taylor, EA; Sonuga-Barke, EJS; Jensen, PS; Castellanos, FX
in: Neuroscience in the 21st Century: From Basic to Clinical by
pp. 4027-4046
ISBN: 9781493934744
CID: 2585102
Attention networks
Chapter by: Barron, DS; Castellanos, FX
in: Neuroscience in the 21st Century: From Basic to Clinical by
pp. 1705-1719
ISBN: 9781493934744
CID: 2585092
Online Radial Multiband Magnetic Resonance Fingerprinting [Meeting Abstract]
Cloos, Martijn A; Zhao, Tiejun; Knoll, Florian; Sodickson, Daniel K
ORIGINAL:0014723
ISSN: 1524-6965
CID: 4535152
Introductory magnetic resonance imaging physics
Chapter by: Sodickson, Aaron D; Sodickson, Daniel K
in: Handbook of neuro-oncology neuroimaging by Newton, Herbert B [Eds]
San Diego, CA, US: Elsevier Academic Press, 2016
pp. 157-166
ISBN: 978-0-12-800945-1
CID: 2259702
Tau Immunotherapy
Sigurdsson, Einar M
In recent years, tau immunotherapy has advanced from proof-of-concept studies [Sigurdsson EM, NIH R01AG020197, 2001; Asuni AA, et al: J Neurosci 2007;27:9115-9129], which have now been confirmed and extended by us and others. Phase I clinical trials on active and passive tau immunizations are being conducted, with several additional passive tau antibody trials likely to be initiated in the near future for Alzheimer's disease and other tauopathies. Because tau pathology correlates better with the degree of dementia than amyloid-beta (Abeta) pathology, greater clinical efficacy may be achieved by clearing tau than Abeta aggregates in the later stages of the disease, when cognitive impairments become evident. Substantial insight has now been obtained regarding which epitopes to target, mechanism of action and potential toxicity, but much remains to be clarified. All of these factors likely depend on the model/disease or stage of pathology and the immunogen/antibody. Interestingly, tau antibodies interact with the protein both extra- and intracellularly, but the importance of each site for tau clearance is not well defined. Some antibodies are readily taken up into neurons, whereas others are not. It can be argued that extracellular clearance may be safer but less efficacious than intraneuronal clearance and/or sequestration to prevent secretion and further spread of tau pathology. Development of therapeutic tau antibodies has led to antibody-derived imaging probes, which are more specific than the dye-based compounds that are already in clinical trials. Such specificity may give valuable information on the pathological tau epitope profile, which could then guide the selection of therapeutic antibodies for maximal efficacy and safety. Hopefully, tau immunotherapy will be effective in clinical trials, and further advanced by mechanistic clarification in experimental models with insights from biomarkers and postmortem analyses of clinical subjects.
PMCID:4777344
PMID: 26551002
ISSN: 1660-2862
CID: 1834672
From the Eye to the Brain: Development of the Drosophila Visual System
Neriec, Nathalie; Desplan, Claude
How stem cells produce the huge diversity of neurons that form the visual system, and how these cells are assembled in neural circuits are a critical question in developmental neurobiology. Investigations in Drosophila have led to the discovery of several basic principles of neural patterning. In this chapter, we provide an overview of the field by describing the development of the Drosophila visual system, from the embryo to the adult and from the gross anatomy to the cellular level. We then explore the general molecular mechanisms identified that might apply to other neural structures in flies or in vertebrates. Finally, we discuss the major challenges that remain to be addressed in the field.
PMCID:5174189
PMID: 26970623
ISSN: 1557-8933
CID: 2744832
Tracking the Time-Dependent Role of the Hippocampus in Memory Recall Using DREADDs
Varela, Carmen; Weiss, Sarah; Meyer, Retsina; Halassa, Michael; Biedenkapp, Joseph; Wilson, Matthew A; Goosens, Ki Ann; Bendor, Daniel
The hippocampus is critical for the storage of new autobiographical experiences as memories. Following an initial encoding stage in the hippocampus, memories undergo a process of systems-level consolidation, which leads to greater stability through time and an increased reliance on neocortical areas for retrieval. The extent to which the retrieval of these consolidated memories still requires the hippocampus is unclear, as both spared and severely degraded remote memory recall have been reported following post-training hippocampal lesions. One difficulty in definitively addressing the role of the hippocampus in remote memory retrieval is the precision with which the entire volume of the hippocampal region can be inactivated. To address this issue, we used Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), a chemical-genetic tool capable of highly specific neuronal manipulation over large volumes of brain tissue. We find that remote (>7 weeks after acquisition), but not recent (1-2 days after acquisition) contextual fear memories can be recalled after injection of the DREADD agonist (CNO) in animals expressing the inhibitory DREADD in the entire hippocampus. Our data demonstrate a time-dependent role of the hippocampus in memory retrieval, supporting the standard model of systems consolidation.
PMCID:4856306
PMID: 27145133
ISSN: 1932-6203
CID: 2100862