Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Neuroscience Institute

Total Results:

13363


Oscillometry complements spirometry in evaluation of subjects following toxic inhalation

Berger, Kenneth I; Turetz, Meredith; Liu, Mengling; Shao, Yongzhao; Kazeros, Angeliki; Parsia, Sam; Caplan-Shaw, Caralee; Friedman, Stephen M; Maslow, Carey B; Marmor, Michael; Goldring, Roberta M; Reibman, Joan
The World Trade Center (WTC) destruction released dust and fumes into the environment. Although many community members developed respiratory symptoms, screening spirometry was usually normal. We hypothesised that forced oscillation testing would identify functional abnormalities undetected by spirometry and that symptom severity would relate to magnitude of abnormalities measured by oscillometry. A symptomatic cohort (n=848) from the Bellevue Hospital WTC Environmental Health Center was evaluated and compared to an asymptomatic cohort (n=475) from the New York City Department of Health WTC Health Registry. Spirometry and oscillometry were performed. Oscillometry measurements included resistance (R5) and frequency dependence of resistance (R5-20). Spirometry was normal for the majority of subjects (73.2% symptomatic versus 87.6% asymptomatic, p<0.0001). In subjects with normal spirometry, R5 and R5-20 were higher in symptomatic versus asymptomatic subjects (median (interquartile range) R5 0.436 (0.206) versus 0.314 (0.129) kPa.L-1.s-1, p<0.001; R5-20 0.075 (0.085) versus 0.004 (0.042) kPa.L-1.s-1, p<0.0001). In symptomatic subjects, R5 and R5-20 increased with increasing severity and frequency of wheeze (p<0.05). Measurement of R5-20 correlated with the presence and severity of symptoms even when spirometry was within normal limits. These findings are in accord with small airway abnormalities as a potential explanation of the respiratory symptoms.
PMCID:5005120
PMID: 27730155
ISSN: 2312-0541
CID: 2278362

Uncovering Hidden Layers of Cell Cycle Regulation through Integrative Multi-omic Analysis

Aviner, Ranen; Shenoy, Anjana; Elroy-Stein, Orna; Geiger, Tamar
Studying the complex relationship between transcription, translation and protein degradation is essential to our understanding of biological processes in health and disease. The limited correlations observed between mRNA and protein abundance suggest pervasive regulation of post-transcriptional steps and support the importance of profiling mRNA levels in parallel to protein synthesis and degradation rates. In this work, we applied an integrative multi-omic approach to study gene expression along the mammalian cell cycle through side-by-side analysis of mRNA, translation and protein levels. Our analysis sheds new light on the significant contribution of both protein synthesis and degradation to the variance in protein expression. Furthermore, we find that translation regulation plays an important role at S-phase, while progression through mitosis is predominantly controlled by changes in either mRNA levels or protein stability. Specific molecular functions are found to be co-regulated and share similar patterns of mRNA, translation and protein expression along the cell cycle. Notably, these include genes and entire pathways not previously implicated in cell cycle progression, demonstrating the potential of this approach to identify novel regulatory mechanisms beyond those revealed by traditional expression profiling. Through this three-level analysis, we characterize different mechanisms of gene expression, discover new cycling gene products and highlight the importance and utility of combining datasets generated using different techniques that monitor distinct steps of gene expression.
PMCID:4595013
PMID: 26439921
ISSN: 1553-7404
CID: 2038192

Comparison of fitting methods and b-value sampling strategies for intravoxel incoherent motion in breast cancer

Cho, Gene Young; Moy, Linda; Zhang, Jeff L; Baete, Steven; Lattanzi, Riccardo; Moccaldi, Melanie; Babb, James S; Kim, Sungheon; Sodickson, Daniel K; Sigmund, Eric E
PURPOSE: To compare fitting methods and sampling strategies, including the implementation of an optimized b-value selection for improved estimation of intravoxel incoherent motion (IVIM) parameters in breast cancer. METHODS: Fourteen patients (age, 48.4 +/- 14.27 years) with cancerous lesions underwent 3 Tesla breast MRI examination for a HIPAA-compliant, institutional review board approved diffusion MR study. IVIM biomarkers were calculated using "free" versus "segmented" fitting for conventional or optimized (repetitions of key b-values) b-value selection. Monte Carlo simulations were performed over a range of IVIM parameters to evaluate methods of analysis. Relative bias values, relative error, and coefficients of variation (CV) were obtained for assessment of methods. Statistical paired t-tests were used for comparison of experimental mean values and errors from each fitting and sampling method. RESULTS: Comparison of the different analysis/sampling methods in simulations and experiments showed that the "segmented" analysis and the optimized method have higher precision and accuracy, in general, compared with "free" fitting of conventional sampling when considering all parameters. Regarding relative bias, IVIM parameters fp and Dt differed significantly between "segmented" and "free" fitting methods. CONCLUSION: IVIM analysis may improve using optimized selection and "segmented" analysis, potentially enabling better differentiation of breast cancer subtypes and monitoring of treatment. Magn Reson Med, 2014. (c) 2014 Wiley Periodicals, Inc.
PMCID:4439397
PMID: 25302780
ISSN: 0740-3194
CID: 1300192

Optimization of white matter fiber tractography with diffusional kurtosis imaging

Glenn, G Russell; Helpern, Joseph A; Tabesh, Ali; Jensen, Jens H
Diffusional kurtosis imaging (DKI) is a clinically feasible diffusion MRI technique for white matter (WM) fiber tractography (FT) with the ability to directly resolve intra-voxel crossing fibers by means of the kurtosis diffusion orientation distribution function (dODF). Here we expand on previous work by exploring properties of the kurtosis dODF and their subsequent effects on WM FT for in vivo human data. For comparison, the results are contrasted with fiber bundle orientation estimates provided by the diffusion tensor, which is the primary quantity obtained from diffusion tensor imaging. We also outline an efficient method for performing DKI-based WM FT that can substantially decrease the computational requirements. The recommended method for implementing the kurtosis ODF is demonstrated to optimize the reproducibility and sensitivity of DKI for detecting crossing fibers while reducing the occurrence of non-physically-meaningful, negative values in the kurtosis dODF approximation. In addition, DKI-based WM FT is illustrated for different protocols differing in image acquisition times from 48 to 5.3 min
PMID: 26275886
ISSN: 1099-1492
CID: 1745082

Cannabinoids and Epilepsy

Rosenberg, Evan C; Tsien, Richard W; Whalley, Benjamin J; Devinsky, Orrin
Cannabis has been used for centuries to treat seizures. Recent anecdotal reports, accumulating animal model data, and mechanistic insights have raised interest in cannabis-based antiepileptic therapies. In this study, we review current understanding of the endocannabinoid system, characterize the pro- and anticonvulsive effects of cannabinoids [e.g., Delta9-tetrahydrocannabinol and cannabidiol (CBD)], and highlight scientific evidence from pre-clinical and clinical trials of cannabinoids in epilepsy. These studies suggest that CBD avoids the psychoactive effects of the endocannabinoid system to provide a well-tolerated, promising therapeutic for the treatment of seizures, while whole-plant cannabis can both contribute to and reduce seizures. Finally, we discuss results from a new multicenter, open-label study using CBD in a population with treatment-resistant epilepsy. In all, we seek to evaluate our current understanding of cannabinoids in epilepsy and guide future basic science and clinical studies.
PMCID:4604191
PMID: 26282273
ISSN: 1878-7479
CID: 1732202

Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning

Buzsaki, Gyorgy
PMCID:4648295
PMID: 26135716
ISSN: 1098-1063
CID: 1650702

Visuo-Vestibular Information Processing by Unipolar Brush Cells in the Rabbit Flocculus

Hensbroek, Robert A; Ruigrok, Tom J H; van Beugen, Boeke J; Maruta, Jun; Simpson, John I
The unipolar brush cell (UBC) is a glutamatergic granular layer interneuron that is predominantly located in the vestibulocerebellum and parts of the vermis. In rat and rabbit, we previously found using juxtacellular labeling combined with spontaneous activity recording that cells with highly regular spontaneous activity belong to the UBC category. Making use of this signature, we recorded from floccular UBCs in both anesthetized and awake rabbits while delivering visuo-vestibular stimulation by using sigmoidal rotation of the whole animal. In the anesthetized rabbit, the activity of the presumed UBC units displayed a wide variety of modulation profiles that could be related to aspects of head velocity or acceleration. These modulation profiles could also be found in the awake rabbit where, in addition, they could also carry an eye position signal. Furthermore, units in the awake rabbit could demonstrate rather long response latencies of up to 0.5 s. We suggest that the UBCs recorded in this study mostly belong to the type I UBC category (calretinin-positive) and that they can play diverse roles in floccular visuo-vestibular information processing, such as transformation of velocity-related signals to acceleration-related signals.
PMCID:4612327
PMID: 26280650
ISSN: 1473-4230
CID: 1754352

Comparison of contrast enhancement and diffusion-weighted magnetic resonance imaging in healthy and cancerous breast tissue

Cho, Gene Young; Moy, Linda; Kim, Sungheon G; Klautau Leite, Ana Paula; Baete, Steven H; Babb, James S; Sodickson, Daniel K; Sigmund, Eric E
OBJECTIVE: To measure background parenchymal enhancement (BPE) and compare with other contrast enhancement values and diffusion-weighted MRI parameters in healthy and cancerous breast tissue at the clinical level. MATERIALS AND METHODS: This HIPAA-compliant, IRB approved retrospective study enrolled 77 patients (38 patients with breast cancer - mean age 51.8+/-10.0 years; 39 high-risk patients for screening evaluation - mean age 46.3+/-11.7 years), who underwent contrast-enhanced 3T breast MRI. Contrast enhanced MRI and diffusion-weighted imaging were performed to quantify BPE, lesion contrast enhancement, and apparent diffusion coefficient (ADC) metrics in fibroglandular tissue (FGT) and lesions. RESULTS: BPE did not correlate with ADC values. Mean BPE for the lesion-bearing patients was higher (43.9%) compared to that of the high-risk screening patients (28.3%, p=0.004). Significant correlation (r=0.37, p<0.05) was found between BPE and lesion contrast enhancement. CONCLUSION: No significant association was observed between parenchymal or lesion enhancement with conventional apparent diffusion metrics, suggesting that proliferative processes are not co-regulated in cancerous and parenchymal tissue.
PMID: 26220915
ISSN: 1872-7727
CID: 1698502

Intrinsic brain indices of verbal working memory capacity in children and adolescents

Yang, Zhen; Jutagir, Devika R; Koyama, Maki S; Craddock, R Cameron; Yan, Chao-Gan; Shehzad, Zarrar; Castellanos, F Xavier; Di Martino, Adriana; Milham, Michael P
Working memory (WM) is central to the acquisition of knowledge and skills throughout childhood and adolescence. While numerous behavioral and task-based functional magnetic resonance imaging (fMRI) studies have examined WM development, few have used resting-state fMRI (R-fMRI). Here, we present a systematic R-fMRI examination of age-related differences in the neural indices of verbal WM performance in a cross-sectional pediatric sample (ages: 7-17; n=68), using data-driven approaches. Verbal WM capacity was measured with the digit span task, a commonly used educational and clinical assessment. We found distinct neural indices of digit span forward (DSF) and backward (DSB) performance, reflecting their unique neuropsychological demands. Regardless of age, DSB performance was related to intrinsic properties of brain areas previously implicated in attention and cognitive control, while DSF performance was related to areas less commonly implicated in verbal WM storage (precuneus, lateral visual areas). From a developmental perspective, DSF exhibited more robust age-related differences in brain-behavior relationships than DSB, and implicated a broader range of networks (ventral attention, default, somatomotor, limbic networks) - including a number of regions not commonly associated with verbal WM (angular gyrus, subcallosum). These results highlight the importance of examining the neurodevelopment of verbal WM and of considering regions beyond the "usual suspects".
PMCID:4696540
PMID: 26299314
ISSN: 1878-9307
CID: 1741982

Short-term test-retest reliability of resting state fMRI metrics in children with and without attention-deficit/hyperactivity disorder

Somandepalli, Krishna; Kelly, Clare; Reiss, Philip T; Zuo, Xi-Nian; Cameron Craddock, R; Yan, Chao-Gan; Petkova, Eva; Xavier Castellanos, F; Milham, Michael P; Di Martino, Adriana
To date, only one study has examined test-retest reliability of resting state fMRI (R-fMRI) in children, none in clinical developing groups. Here, we assessed short-term test-retest reliability in a sample of 46 children (11-17.9 years) with attention-deficit/hyperactivity disorder (ADHD) and 57 typically developing children (TDC). Our primary test-retest reliability measure was the intraclass correlation coefficient (ICC), quantified for a range of R-fMRI metrics. We aimed to (1) survey reliability within and across diagnostic groups, and (2) compare voxel-wise ICC between groups. We found moderate-to-high ICC across all children and within groups, with higher-order functional networks showing greater ICC. Nearly all R-fMRI metrics exhibited significantly higher ICC in TDC than in children with ADHD for one or more regions. In particular, posterior cingulate and ventral precuneus exhibited group differences in ICC across multiple measures. In the context of overall moderate-to-high test-retest reliability in children, regional differences in ICC related to diagnostic groups likely reflect the underlying pathophysiology for ADHD. Our currently limited understanding of the factors contributing to inter- and intra-subject variability in ADHD underscores the need for large initiatives aimed at examining their impact on test-retest reliability in both clinical and developing populations.
PMID: 26365788
ISSN: 1878-9307
CID: 1779102