Try a new search

Format these results:

Searched for:

person:nwb2

Total Results:

391


Activation and internalization of the mu-opioid receptor by the newly discovered endogenous agonists, endomorphin-1 and endomorphin-2

McConalogue, K; Grady, E F; Minnis, J; Balestra, B; Tonini, M; Brecha, N C; Bunnett, N W; Sternini, C
The multiple effects of opiate alkaloids, important therapeutic drugs used for pain control, are mediated by the neuronal miro-opioid receptor. Among the side effects of these drugs is a profound impairment of gastrointestinal transit. Endomorphins are opioid peptides recently isolated from the nervous system, which have high affinity and selectivity for micro-opioid receptors. Since the miro-opioid receptor undergoes ligand-induced receptor endocytosis in an agonist-dependent manner, we compared the ability of endomorphin-1, endomorphin-2 and the micro-opioid receptor peptide agonist, [D-Ala2,MePhe4,Gly-ol5]-enkephalin (DAMGO), to induce receptor endocytosis in cells transfected with epitope-tagged micro-opioid receptor complementary DNA, and in myenteric neurons of the guinea-pig ileum, which naturally express this receptor. Immunohistochemistry with antibodies to the FLAG epitope or to the native receptor showed that the micro-opioid receptor was mainly located at the plasma membrane of unstimulated cells. Endomorphins and DAMGO induced micro-opioid receptor endocytosis into early endosomes, a process that was inhibited by naloxone. Quantification of surface receptors by flow cytometry indicated that endomorphins' and DAMGO stimulated endocytosis with similar time-course and potency. They inhibited with similar potency electrically induced cholinergic contractions in the longitudinal muscle-myenteric plexus preparation through an action antagonized by naloxone. The apparent affinity estimate of naloxone (pA2 approximately 8.4) is consistent with antagonism at the micro-opioid receptor in myenteric neurons. These results indicate that endomorphins directly activate the micro-opioid receptor in neurons, thus supporting the hypothesis that they are ligands mediating opioid actions in the nervous system. Endomorphin-induced micro-opioid receptor activation can be visualized by receptor endocytosis.
PMCID:4472477
PMID: 10218804
ISSN: 0306-4522
CID: 4156312

VCAM-1 expression on human dermal microvascular endothelial cells is directly and specifically up-regulated by substance P

Quinlan, K L; Song, I S; Naik, S M; Letran, E L; Olerud, J E; Bunnett, N W; Armstrong, C A; Caughman, S W; Ansel, J C
Sensory nerves in skin are capable of releasing multiple neuropeptides, which modulate inflammatory responses by activating specific cutaneous target cells. Extravasation of particular subsets of leukocytes depends upon the regulated expression of cellular adhesion molecules such as VCAM-1 on microvascular endothelial cells. We examined the direct effect of cutaneous neuropeptides on the expression and function of human dermal microvascular endothelial cell (HDMEC) VCAM-1. A significant increase in VCAM-1 immunostaining of microvascular endothelium was observed in vivo following capsaicin application to human skin. Multiple cutaneous sensory C-fiber-released neuropeptides were evaluated for their ability to induce VCAM-1 cell surface expression on HDMEC. Only substance P (SP) was found to be capable of inducing HDMEC VCAM-1 expression. This SP-mediated VCAM-1 induction appeared to be a direct effect that did not require the release of other HDMEC-derived soluble factors. Increased HDMEC VCAM-1 mRNA expression was detected 1 h after the addition of SP, with peak mRNA increase at 6-9 h postinduction. FACS studies demonstrated a 6.5-fold increase in endothelial cell surface VCAM-1 expression detectable 16 h after addition of SP, which was specifically blocked by a neurokinin-1 receptor antagonist. Increased VCAM-1 cell surface expression on SP-treated HDMEC resulted in a 4-fold increase in the functional binding of 51Cr-labeled MOLT-4 T cells. These data indicate that SP is capable of directly and specifically up-regulating functional endothelial VCAM-1 expression and thus may play a key role in modulating certain inflammatory responses in the skin.
PMID: 9973426
ISSN: 0022-1767
CID: 4158042

Substance P release in the dorsal horn assessed by receptor internalization: NMDA receptors counteract a tonic inhibition by GABA(B) receptors

Marvizón, J C; Grady, E F; Stefani, E; Bunnett, N W; Mayer, E A
Inhibitory amino acids have antinociceptive actions in the spinal cord that may involve inhibition of neurotransmitter release from primary afferents. Rat spinal cord slices with dorsal roots were used to study the effect of GABA and glycine on substance P release, assessed by the internalization of neurokinin 1 receptors. After electrical stimulation of the dorsal root at 100 Hz, about half of neurokinin 1 receptor-immunoreactive neurons in laminae I-IIo showed internalization. This internalization was inhibited by GABA (100 microM) and the GABA(B) agonist R-baclofen (10 microM), but not by the GABA(A) agonist muscimol (20 microM) or glycine (100 microM). The GABA(B) antagonist 2-hydroxysaclofen (100 microM) reversed the inhibitory effect of GABA, but not the GABA(A) antagonist bicuculline (100 microM). These findings demonstrate that GABA(B) receptors, but not GABA(A) or glycine receptors, inhibit substance P release induced by dorsal root stimulation. In contrast, R-baclofen did not inhibit the internalization produced by NMDA (100 microM), indicating that the stimulatory effect of NMDA receptors on substance P release is able to surmount the inhibitory effect of GABA(B) receptors. In the presence of the GABA(B) antagonist 2-hydroxysaclofen (100 microM), but not in its absence, stimulation of the dorsal root at 1 or 10 Hz was able to elicit internalization, which was not inhibited by the NMDA receptor antagonist AP-5 (50 microM) or the channel blocker MK-801 (10 microM). Therefore, inhibition of substance P release by GABA(B) receptors is tonic, and in its absence SP release no longer requires NMDA receptor activation.
PMID: 10051742
ISSN: 0953-816x
CID: 4156282

Proteinase-activated receptors: a growing family of heptahelical receptors for thrombin, trypsin and tryptase

Déry, O; Bunnett, N W
PMID: 10093742
ISSN: 0300-5127
CID: 4156302

Neurogenic plasma leakage in mouse airways

Baluk, P; Thurston, G; Murphy, T J; Bunnett, N W; McDonald, D M
1. This study sought to determine whether neurogenic inflammation occurs in the airways by examining the effects of capsaicin or substance P on microvascular plasma leakage in the trachea and lungs of male pathogen-free C57BL/6 mice. 2. Single bolus intravenous injections of capsaicin (0.5 and 1 micromol kg(-1), i.v.) or substance P (1, 10 and 37 nmol kg(-10, i.v.) failed to induce significant leakage in the trachea, assessed as extravasation of Evans blue dye, but did induce leakage in the urinary bladder and skin. 3. Pretreatment with captopril (2.5 mg kg(-1), i.v.), a selective inhibitor of angiotensin converting enzyme (ACE), either alone or in combination with phosphoramidon (2.5 mg kg(-1), i.v.), a selective inhibitor of neutral endopeptidase (NEP), increased baseline leakage of Evans blue in the absence of any exogenous inflammatory mediator. The increase was reversed by the bradykinin B2 receptor antagonist Hoe 140 (0.1 mg kg(-1), i.v.). 4. After pretreatment with phosphoramidon and captopril, capsaicin increased the Evans blue leakage above the baseline in the trachea, but not in the lung. This increase was reversed by the tachykinin (NK1) receptor antagonist SR 140333 (0.7 mg kg(-1), i.v.), but not by the NK2 receptor antagonist SR 48968 (1 mg kg(-1), i.v.). 5. Experiments using Monastral blue pigment as a tracer localized the leakage to postcapillary venules in the trachea and intrapulmonary bronchi, although the labelled vessels were less numerous in mice than in comparably treated rats. Blood vessels of the pulmonary circulation were not labelled. 6. We conclude that neurogenic inflammation can occur in airways of pathogen-free mice, but only after the inhibition of enzymes that normally degrade inflammatory peptides. Neurogenic inflammation does not involve the pulmonary microvasculature.
PMCID:1565827
PMID: 10077247
ISSN: 0007-1188
CID: 4156292

Trypsin activates pancreatic duct epithelial cell ion channels through proteinase-activated receptor-2

Nguyen, T D; Moody, M W; Steinhoff, M; Okolo, C; Koh, D S; Bunnett, N W
Proteinase-activated receptor-2 (PAR-2) is a G protein-coupled receptor that is cleaved by trypsin within the NH2-terminus, exposing a tethered ligand that binds and activates the receptor. We examined the secretory effects of trypsin, mediated through PAR-2, on well-differentiated nontransformed dog pancreatic duct epithelial cells (PDEC). Trypsin and activating peptide (AP or SLIGRL-NH2, corresponding to the PAR-2 tethered ligand) stimulated both an 125I- efflux inhibited by Ca2+-activated Cl- channel inhibitors and a 86Rb+ efflux inhibited by a Ca2+-activated K+ channel inhibitor. The reverse peptide (LRGILS-NH2) and inhibited trypsin were inactive. Thrombin had no effect, suggesting absence of PAR-1, PAR-3, or PAR-4. In Ussing chambers, trypsin and AP stimulated a short-circuit current from the basolateral, but not apical, surface of PDEC monolayers. In monolayers permeabilized basolaterally or apically with nystatin, AP activated apical Cl- and basolateral K+ conductances. PAR-2 agonists increased [Ca2+]i in PDEC, and the calcium chelator BAPTA inhibited the secretory effects of AP. PAR-2 expression on dog pancreatic ducts and PDEC was verified by immunofluorescence. Thus, trypsin interacts with basolateral PAR-2 to increase [Ca2+]i and activate ion channels in PDEC. In pancreatitis, when trypsinogen is prematurely activated, PAR-2-mediated ductal secretion may promote clearance of toxins and debris.
PMCID:407874
PMID: 9916138
ISSN: 0021-9738
CID: 4158032

Cell surface receptors : mechanisms of signaling and inactivation

Chapter by: Sitaramayya, Ari; Bunnett, Nigel W
in: Introduction to cellular signal transduction by Sitaramayya, Ari (Ed)
Boston : Birkhauser, 1999
pp. ?-?
ISBN: 9783764339821
CID: 4158952

Neuropeptide regulation of human dermal microvascular endothelial cell ICAM-1 expression and function

Quinlan, K L; Song, I S; Bunnett, N W; Letran, E; Steinhoff, M; Harten, B; Olerud, J E; Armstrong, C A; Wright Caughman, S; Ansel, J C
There is increasing evidence that sensory nerves may participate in cutaneous inflammatory responses by the release of neuropeptides such as substance P (SP). We examined the direct effect of SP on human dermal microvascular endothelial cell (HDMEC) intercellular adhesion molecule 1 (ICAM-1) expression and function. Our results indicated that, although cultured HDMEC expressed mRNA for neurokinin receptors 1, 2, and 3 (NK-1R, NK-2R, and NK-3R), SP initiated a rapid increase in HDMEC intracellular Ca2+ levels, primarily by the activation of NK-1R. Immunohistochemistry studies likewise demonstrated that HDMEC predominantly expressed NK-1R. The addition of SP to HDMEC resulted in a rapid increase in cellular ICAM-1 mRNA levels, followed by a fivefold increase in ICAM-1 cell surface expression. This functionally resulted in a threefold increase in 51Cr-labeled binding of J-Y lymphoblastoid cells to HDMEC. In vivo studies demonstrated a marked increase in microvascular ICAM-1 immunostaining 24 and 48 h after application of capsaicin to the skin. These results indicate that neuropeptides such as SP are capable of directly activating HDMEC to express increased levels of functional ICAM-1 and further support the role of the cutaneous neurological system in modulating inflammatory processes in the skin.
PMID: 9843720
ISSN: 0002-9513
CID: 4158022

Proteinase-Activated Receptors: New Functions for Old Enzymes

Böhm, Stephan K.; McConalogue, Karen; Kong, Wuyi; Bunnett, Nigel W.
Although proteases are traditionally viewed as degradative enzymes, characterization of a family of G protein-coupled receptors that are activated by proteolysis reveals a new role. Certain proteases function as signaling molecules that specifically regulate cells by cleaving and activating a family of proteinase-activated receptors.
PMID: 11390795
ISSN: 0886-1714
CID: 4156612

Peptide G protein-coupled receptors meet at Erice

Bunnett, N W; Bouvier, M; De Blasi, A
PMID: 9786019
ISSN: 0165-6147
CID: 4158012