Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Neuroscience Institute

Total Results:

13474


Development and external validation of a dynamic risk score for early prediction of cardiogenic shock in cardiac intensive care units using machine learning

Hu, Yuxuan; Lui, Albert; Goldstein, Mark; Sudarshan, Mukund; Tinsay, Andrea; Tsui, Cindy; Maidman, Samuel D; Medamana, John; Jethani, Neil; Puli, Aahlad; Nguy, Vuthy; Aphinyanaphongs, Yindalon; Kiefer, Nicholas; Smilowitz, Nathaniel R; Horowitz, James; Ahuja, Tania; Fishman, Glenn I; Hochman, Judith; Katz, Stuart; Bernard, Samuel; Ranganath, Rajesh
BACKGROUND:Myocardial infarction and heart failure are major cardiovascular diseases that affect millions of people in the US with the morbidity and mortality being highest among patients who develop cardiogenic shock. Early recognition of cardiogenic shock allows prompt implementation of treatment measures. Our objective is to develop a new dynamic risk score, called CShock, to improve early detection of cardiogenic shock in cardiac intensive care unit (ICU). METHODS:We developed and externally validated a deep learning-based risk stratification tool, called CShock, for patients admitted into the cardiac ICU with acute decompensated heart failure and/or myocardial infarction to predict onset of cardiogenic shock. We prepared a cardiac ICU dataset using MIMIC-III database by annotating with physician adjudicated outcomes. This dataset that consisted of 1500 patients with 204 having cardiogenic/mixed shock was then used to train CShock. The features used to train the model for CShock included patient demographics, cardiac ICU admission diagnoses, routinely measured laboratory values and vital signs, and relevant features manually extracted from echocardiogram and left heart catheterization reports. We externally validated the risk model on the New York University (NYU) Langone Health cardiac ICU database that was also annotated with physician adjudicated outcomes. The external validation cohort consisted of 131 patients with 25 patients experiencing cardiogenic/mixed shock. RESULTS:CShock achieved an area under the receiver operator characteristic curve (AUROC) of 0.821 (95% CI 0.792-0.850). CShock was externally validated in the more contemporary NYU cohort and achieved an AUROC of 0.800 (95% CI 0.717-0.884), demonstrating its generalizability in other cardiac ICUs. Having an elevated heart rate is most predictive of cardiogenic shock development based on Shapley values. The other top ten predictors are having an admission diagnosis of myocardial infarction with ST-segment elevation, having an admission diagnosis of acute decompensated heart failure, Braden Scale, Glasgow Coma Scale, Blood urea nitrogen, Systolic blood pressure, Serum chloride, Serum sodium, and Arterial blood pH. CONCLUSIONS:The novel CShock score has the potential to provide automated detection and early warning for cardiogenic shock and improve the outcomes for the millions of patients who suffer from myocardial infarction and heart failure.
PMID: 38518758
ISSN: 2048-8734
CID: 5640892

The stability of slow-wave sleep and EEG oscillations across two consecutive nights of laboratory polysomnography in cognitively normal older adults

Mullins, Anna E; Pehel, Shayna; Parekh, Ankit; Kam, Korey; Bubu, Omonigho M; Tolbert, Thomas M; Rapoport, David M; Ayappa, Indu; Varga, Andrew W; Osorio, Ricardo S
Laboratory polysomnography provides gold-standard measures of sleep physiology, but multi-night investigations are resource intensive. We assessed the night-to-night stability via reproducibility metrics for sleep macrostructure and electroencephalography oscillations in a group of cognitively normal adults attending two consecutive polysomnographies. Electroencephalographies were analysed using an automatic algorithm for detection of slow-wave activity, spindle and K-complex densities. Average differences between nights for sleep macrostructure, electroencephalography oscillations and sleep apnea severity were assessed, and test-retest reliability was determined using two-way intraclass correlations. Agreement was calculated using the smallest real differences between nights for all measures. Night 2 polysomnographies showed significantly greater time in bed, total sleep time (6.3 hr versus 6.8 hr, p < 0.001) and percentage of rapid eye movement sleep (17.5 versus 19.7, p < 0.001). Intraclass correlations were low for total sleep time, percentage of rapid eye movement sleep and sleep efficiency, moderate for percentage of slow-wave sleep and percentage of non-rapid eye movement 2 sleep, good for slow-wave activity and K-complex densities, and excellent for spindles and apnea-hypopnea index with hypopneas defined according to 4% oxygen desaturation criteria only. The smallest real difference values were proportionally high for most sleep macrostructure measures, indicating moderate agreement, and proportionally lower for most electroencephalography microstructure variables. Slow waves, K-complexes, spindles and apnea severity indices are highly reproducible across two consecutive nights of polysomnography. In contrast, sleep macrostructure measures all demonstrated poor reproducibility as indicated by low intraclass correlation values and moderate agreement. Although there were average differences in percentage of rapid eye movement sleep and total sleep time, these were numerically small and perhaps functionally or clinically less significant. One night of in-laboratory polysomnography is enough to provide stable, reproducible estimates of an individual's sleep concerning measures of slow-wave activity, spindles, K-complex densities and apnea severity.
PMID: 38937887
ISSN: 1365-2869
CID: 5733392

Identifying behavioral links to neural dynamics of multifiber photometry recordings in a mouse social behavior network

Chen, Yibo; Chien, Jonathan; Dai, Bing; Lin, Dayu; Chen, Zhe Sage
Distributed hypothalamic-midbrain neural circuits help orchestrate complex behavioral responses during social interactions. Given rapid advances in optical imaging, it is a fundamental question how population-averaged neural activity measured by multi-fiber photometry (MFP) for calcium fluorescence signals correlates with social behaviors is a fundamental question. This paper aims to investigate the correspondence between MFP data and social behaviors. &#xD;Approach: We propose a state-space analysis framework to characterize mouse MFP data based on dynamic latent variable models, which include a continuous-state linear dynamical system (LDS) and a discrete-state hidden semi-Markov model (HSMM). We validate these models on extensive MFP recordings during aggressive and mating behaviors in male-male and male-female interactions, respectively. &#xD;Main Results: Our results show that these models are capable of capturing both temporal behavioral structure and associated neural states, and produce interpretable latent states. Our approach is also validated in computer simulations in the presence of known ground truth.&#xD;Significance: Overall, these analysis approaches provide a state-space framework to examine neural dynamics underlying social behaviors and reveals mechanistic insights into the relevant networks. &#xD;&#xD.
PMID: 38861996
ISSN: 1741-2552
CID: 5668992

Choline supplementation in early life improves and low levels of choline can impair outcomes in a mouse model of Alzheimer's disease

Chartampila, Elissavet; Elayouby, Karim S; Leary, Paige; LaFrancois, John J; Alcantara-Gonzalez, David; Jain, Swati; Gerencer, Kasey; Botterill, Justin J; Ginsberg, Stephen D; Scharfman, Helen E
Maternal choline supplementation (MCS) improves cognition in Alzheimer's disease (AD) models. However, the effects of MCS on neuronal hyperexcitability in AD are unknown. We investigated the effects of MCS in a well-established mouse model of AD with hyperexcitability, the Tg2576 mouse. The most common type of hyperexcitability in Tg2576 mice are generalized EEG spikes (interictal spikes [IIS]). IIS also are common in other mouse models and occur in AD patients. In mouse models, hyperexcitability is also reflected by elevated expression of the transcription factor ∆FosB in the granule cells (GCs) of the dentate gyrus (DG), which are the principal cell type. Therefore, we studied ΔFosB expression in GCs. We also studied the neuronal marker NeuN within hilar neurons of the DG because reduced NeuN protein expression is a sign of oxidative stress or other pathology. This is potentially important because hilar neurons regulate GC excitability. Tg2576 breeding pairs received a diet with a relatively low, intermediate, or high concentration of choline. After weaning, all mice received the intermediate diet. In offspring of mice fed the high choline diet, IIS frequency declined, GC ∆FosB expression was reduced, and hilar NeuN expression was restored. Using the novel object location task, spatial memory improved. In contrast, offspring exposed to the relatively low choline diet had several adverse effects, such as increased mortality. They had the weakest hilar NeuN immunoreactivity and greatest GC ΔFosB protein expression. However, their IIS frequency was low, which was surprising. The results provide new evidence that a diet high in choline in early life can improve outcomes in a mouse model of AD, and relatively low choline can have mixed effects. This is the first study showing that dietary choline can regulate hyperexcitability, hilar neurons, ΔFosB, and spatial memory in an animal model of AD.
PMID: 38904658
ISSN: 2050-084x
CID: 5672412

Monitoring norepinephrine release in vivo using next-generation GRABNE sensors

Feng, Jiesi; Dong, Hui; Lischinsky, Julieta E; Zhou, Jingheng; Deng, Fei; Zhuang, Chaowei; Miao, Xiaolei; Wang, Huan; Li, Guochuan; Cai, Ruyi; Xie, Hao; Cui, Guohong; Lin, Dayu; Li, Yulong
Norepinephrine (NE) is an essential biogenic monoamine neurotransmitter. The first-generation NE sensor makes in vivo, real-time, cell-type-specific and region-specific NE detection possible, but its low NE sensitivity limits its utility. Here, we developed the second-generation GPCR-activation-based NE sensors (GRABNE2m and GRABNE2h) with a superior response and high sensitivity and selectivity to NE both in vitro and in vivo. Notably, these sensors can detect NE release triggered by either optogenetic or behavioral stimuli in freely moving mice, producing robust signals in the locus coeruleus and hypothalamus. With the development of a novel transgenic mouse line, we recorded both NE release and calcium dynamics with dual-color fiber photometry throughout the sleep-wake cycle; moreover, dual-color mesoscopic imaging revealed cell-type-specific spatiotemporal dynamics of NE and calcium during sensory processing and locomotion. Thus, these new GRABNE sensors are valuable tools for monitoring the precise spatiotemporal release of NE in vivo, providing new insights into the physiological and pathophysiological roles of NE.
PMID: 38547869
ISSN: 1097-4199
CID: 5645192

Stimulation of caudal inferior and middle frontal gyri disrupts planning during spoken interaction

Castellucci, Gregg A; Kovach, Christopher K; Tabasi, Farhad; Christianson, David; Greenlee, Jeremy D W; Long, Michael A
Turn-taking is a central feature of conversation across languages and cultures.1
PMID: 38823382
ISSN: 1879-0445
CID: 5664102

Preliminary Experience with Three Alternative Motion Sensors for 0.55 Tesla MR Imaging

Tibrewala, Radhika; Brantner, Douglas; Brown, Ryan; Pancoast, Leanna; Keerthivasan, Mahesh; Bruno, Mary; Block, Kai Tobias; Madore, Bruno; Sodickson, Daniel K; Collins, Christopher M
Due to limitations in current motion tracking technologies and increasing interest in alternative sensors for motion tracking both inside and outside the MRI system, in this study we share our preliminary experience with three alternative sensors utilizing diverse technologies and interactions with tissue to monitor motion of the body surface, respiratory-related motion of major organs, and non-respiratory motion of deep-seated organs. These consist of (1) a Pilot-Tone RF transmitter combined with deep learning algorithms for tracking liver motion, (2) a single-channel ultrasound transducer with deep learning for monitoring bladder motion, and (3) a 3D Time-of-Flight camera for observing the motion of the anterior torso surface. Additionally, we demonstrate the capability of these sensors to simultaneously capture motion data outside the MRI environment, which is particularly relevant for procedures like radiation therapy, where motion status could be related to previously characterized cyclical anatomical data. Our findings indicate that the ultrasound sensor can track motion in deep-seated organs (bladder) as well as respiratory-related motion. The Time-of-Flight camera offers ease of interpretation and performs well in detecting surface motion (respiration). The Pilot-Tone demonstrates efficacy in tracking bulk respiratory motion and motion of major organs (liver). Simultaneous use of all three sensors could provide complementary motion information outside the MRI bore, providing potential value for motion tracking during position-sensitive treatments such as radiation therapy.
PMCID:11207459
PMID: 38931494
ISSN: 1424-8220
CID: 5698062

Interaction of acetylcholine and oxytocin neuromodulation in the hippocampus

Zhang, Yiyao; Karadas, Mursel; Liu, JingJing; Gu, Xinyi; Vöröslakos, Mihály; Li, Yulong; Tsien, Richard W; Buzsáki, György
A postulated role of subcortical neuromodulators is to control brain states. Mechanisms by which different neuromodulators compete or cooperate at various temporal scales remain an open question. We investigated the interaction of acetylcholine (ACh) and oxytocin (OXT) at slow and fast timescales during various brain states. Although these neuromodulators fluctuated in parallel during NREM packets, transitions from NREM to REM were characterized by a surge of ACh but a continued decrease of OXT. OXT signaling lagged behind ACh. High ACh was correlated with population synchrony and gamma oscillations during active waking, whereas minimum ACh predicts sharp-wave ripples (SPW-Rs). Optogenetic control of ACh and OXT neurons confirmed the active role of these neuromodulators in the observed correlations. Synchronous hippocampal activity consistently reduced OXT activity, whereas inactivation of the lateral septum-hypothalamus path attenuated this effect. Our findings demonstrate how cooperative actions of these neuromodulators allow target circuits to perform specific functions.
PMID: 38537642
ISSN: 1097-4199
CID: 5644972

Synthesis and Characterization of Click Chemical Probes for Single-Cell Resolution Detection of Epichaperomes in Neurodegenerative Disorders

Bay, Sadik; Digwal, Chander S; Rodilla Martín, Ananda M; Sharma, Sahil; Stanisavljevic, Aleksandra; Rodina, Anna; Attaran, Anoosha; Roychowdhury, Tanaya; Parikh, Kamya; Toth, Eugene; Panchal, Palak; Rosiek, Eric; Pasala, Chiranjeevi; Arancio, Ottavio; Fraser, Paul E; Alldred, Melissa J; Prado, Marco A M; Ginsberg, Stephen D; Chiosis, Gabriela
Neurodegenerative disorders, including Alzheimer's disease (AD) and Parkinson's disease (PD), represent debilitating conditions with complex, poorly understood pathologies. Epichaperomes, pathologic protein assemblies nucleated on key chaperones, have emerged as critical players in the molecular dysfunction underlying these disorders. In this study, we introduce the synthesis and characterization of clickable epichaperome probes, PU-TCO, positive control, and PU-NTCO, negative control. Through comprehensive in vitro assays and cell-based investigations, we establish the specificity of the PU-TCO probe for epichaperomes. Furthermore, we demonstrate the efficacy of PU-TCO in detecting epichaperomes in brain tissue with a cellular resolution, underscoring its potential as a valuable tool for dissecting single-cell responses in neurodegenerative diseases. This clickable probe is therefore poised to address a critical need in the field, offering unprecedented precision and versatility in studying epichaperomes and opening avenues for novel insights into their role in disease pathology.
PMCID:11201208
PMID: 38927459
ISSN: 2227-9059
CID: 5733212

Shared and Specific Neural Correlates of Attention Deficit Hyperactivity Disorder and Autism Spectrum Disorder: A Meta-Analysis of 243 Task-Based Functional MRI Studies

Tamon, Hiroki; Fujino, Junya; Itahashi, Takashi; Frahm, Lennart; Parlatini, Valeria; Aoki, Yuta Y; Castellanos, Francisco Xavier; Eickhoff, Simon B; Cortese, Samuele
OBJECTIVE/UNASSIGNED:To investigate shared and specific neural correlates of cognitive functions in attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD), the authors performed a comprehensive meta-analysis and considered a balanced set of neuropsychological tasks across the two disorders. METHODS/UNASSIGNED:A broad set of electronic databases was searched up to December 4, 2022, for task-based functional MRI studies investigating differences between individuals with ADHD or ASD and typically developing control subjects. Spatial coordinates of brain loci differing significantly between case and control subjects were extracted. To avoid potential diagnosis-driven selection bias of cognitive tasks, the tasks were grouped according to the Research Domain Criteria framework, and stratified sampling was used to match cognitive component profiles. Activation likelihood estimation was used for the meta-analysis. RESULTS/UNASSIGNED:After screening 20,756 potentially relevant references, a meta-analysis of 243 studies was performed, which included 3,084 participants with ADHD (676 females), 2,654 participants with ASD (292 females), and 6,795 control subjects (1,909 females). ASD and ADHD showed shared greater activations in the lingual and rectal gyri and shared lower activations in regions including the middle frontal gyrus, the parahippocampal gyrus, and the insula. By contrast, there were ASD-specific greater and lower activations in regions including the left middle temporal gyrus and the left middle frontal gyrus, respectively, and ADHD-specific greater and lower activations in the amygdala and the global pallidus, respectively. CONCLUSIONS/UNASSIGNED:Although ASD and ADHD showed both shared and disorder-specific standardized neural activations, disorder-specific activations were more prominent than shared ones. Functional brain differences between ADHD and ASD are more likely to reflect diagnosis-related pathophysiology than bias from the selection of specific neuropsychological tasks.
PMID: 38685858
ISSN: 1535-7228
CID: 5663112