Searched for: school:SOM
Department/Unit:Cell Biology
Unraveling the mechanisms behind joint damage [Comment]
Fu, Wenyu; Liu, Chuan-Ju
A subtype of myeloid monocyte mediates the transition from autoimmunity to joint destruction in rheumatoid arthritis.
PMID: 37366155
ISSN: 2050-084x
CID: 5538552
PTK7 is a positive allosteric modulator of GPR133 signaling in glioblastoma
Frenster, Joshua D; Erdjument-Bromage, Hediye; Stephan, Gabriele; Ravn-Boess, Niklas; Wang, Shuai; Liu, Wenke; Bready, Devin; Wilcox, Jordan; Kieslich, Björn; Jankovic, Manuel; Wilde, Caroline; Horn, Susanne; Sträter, Norbert; Liebscher, Ines; Schöneberg, Torsten; Fenyo, David; Neubert, Thomas A; Placantonakis, Dimitris G
The adhesion G-protein-coupled receptor GPR133 (ADGRD1) supports growth of the brain malignancy glioblastoma. How the extracellular interactome of GPR133 in glioblastoma modulates signaling remains unknown. Here, we use affinity proteomics to identify the transmembrane protein PTK7 as an extracellular binding partner of GPR133 in glioblastoma. PTK7 binds the autoproteolytically generated N-terminal fragment of GPR133 and its expression in trans increases GPR133 signaling. This effect requires the intramolecular cleavage of GPR133 and PTK7's anchoring in the plasma membrane. PTK7's allosteric action on GPR133 signaling is additive with but topographically distinct from orthosteric activation by soluble peptide mimicking the endogenous tethered Stachel agonist. GPR133 and PTK7 are expressed in adjacent cells in glioblastoma, where their knockdown phenocopies each other. We propose that this ligand-receptor interaction is relevant to the pathogenesis of glioblastoma and possibly other physiological processes in healthy tissues.
PMID: 37354459
ISSN: 2211-1247
CID: 5543042
Systems-level analyses of protein-protein interaction network dysfunctions via epichaperomics identify cancer-specific mechanisms of stress adaptation
Rodina, Anna; Xu, Chao; Digwal, Chander S; Joshi, Suhasini; Patel, Yogita; Santhaseela, Anand R; Bay, Sadik; Merugu, Swathi; Alam, Aftab; Yan, Pengrong; Yang, Chenghua; Roychowdhury, Tanaya; Panchal, Palak; Shrestha, Liza; Kang, Yanlong; Sharma, Sahil; Almodovar, Justina; Corben, Adriana; Alpaugh, Mary L; Modi, Shanu; Guzman, Monica L; Fei, Teng; Taldone, Tony; Ginsberg, Stephen D; Erdjument-Bromage, Hediye; Neubert, Thomas A; Manova-Todorova, Katia; Tsou, Meng-Fu Bryan; Young, Jason C; Wang, Tai; Chiosis, Gabriela
Systems-level assessments of protein-protein interaction (PPI) network dysfunctions are currently out-of-reach because approaches enabling proteome-wide identification, analysis, and modulation of context-specific PPI changes in native (unengineered) cells and tissues are lacking. Herein, we take advantage of chemical binders of maladaptive scaffolding structures termed epichaperomes and develop an epichaperome-based 'omics platform, epichaperomics, to identify PPI alterations in disease. We provide multiple lines of evidence, at both biochemical and functional levels, demonstrating the importance of these probes to identify and study PPI network dysfunctions and provide mechanistically and therapeutically relevant proteome-wide insights. As proof-of-principle, we derive systems-level insight into PPI dysfunctions of cancer cells which enabled the discovery of a context-dependent mechanism by which cancer cells enhance the fitness of mitotic protein networks. Importantly, our systems levels analyses support the use of epichaperome chemical binders as therapeutic strategies aimed at normalizing PPI networks.
PMCID:10290137
PMID: 37353488
ISSN: 2041-1723
CID: 5538522
Calcitonin Related Polypeptide Alpha Mediates Oral Cancer Pain
Tu, Nguyen Huu; Inoue, Kenji; Lewis, Parker K; Khan, Ammar; Hwang, Jun Hyeong; Chokshi, Varun; Dabovic, Branka Brukner; Selvaraj, Shanmugapriya; Bhattacharya, Aditi; Dubeykovskaya, Zinaida; Pinkerton, Nathalie M; Bunnett, Nigel W; Loomis, Cynthia A; Albertson, Donna G; Schmidt, Brian L
Oral cancer patients suffer pain at the site of the cancer. Calcitonin gene related polypeptide (CGRP), a neuropeptide expressed by a subset of primary afferent neurons, promotes oral cancer growth. CGRP also mediates trigeminal pain (migraine) and neurogenic inflammation. The contribution of CGRP to oral cancer pain is investigated in the present study. The findings demonstrate that CGRP-immunoreactive (-ir) neurons and neurites innervate orthotopic oral cancer xenograft tumors in mice. Cancer increases anterograde transport of CGRP in axons innervating the tumor, supporting neurogenic secretion as the source of CGRP in the oral cancer microenvironment. CGRP antagonism reverses oral cancer nociception in preclinical oral cancer pain models. Single-cell RNA-sequencing is used to identify cell types in the cancer microenvironment expressing the CGRP receptor components, receptor activity modifying protein 1 Ramp1 and calcitonin receptor like receptor (CLR, encoded by Calcrl). Ramp1 and Calcrl transcripts are detected in cells expressing marker genes for Schwann cells, endothelial cells, fibroblasts and immune cells. Ramp1 and Calcrl transcripts are more frequently detected in cells expressing fibroblast and immune cell markers. This work identifies CGRP as mediator of oral cancer pain and suggests the antagonism of CGRP to alleviate oral cancer pain.
PMCID:10341289
PMID: 37443709
ISSN: 2073-4409
CID: 5535282
RAB27B controls palmitoylation-dependent NRAS trafficking and signaling in myeloid leukemia
Ren, Jian-Gang; Xing, Bowen; Lv, Kaosheng; O'Keefe, Rachel A; Wu, Mengfang; Wang, Ruoxing; Bauer, Kaylyn M; Ghazaryan, Arevik; Burslem, George M; Zhang, Jing; O'Connell, Ryan M; Pillai, Vinodh; Hexner, Elizabeth O; Philips, Mark R; Tong, Wei
RAS mutations are among the most prevalent oncogenic drivers in cancers. RAS proteins propagate signals only when associated with cellular membranes as a consequence of lipid modifications that impact their trafficking. Here, we discovered that RAB27B, a RAB family small GTPase, controlled NRAS palmitoylation and trafficking to the plasma membrane, a localization required for activation. Our proteomic studies revealed RAB27B upregulation in CBL- or JAK2-mutated myeloid malignancies, and its expression correlated with poor prognosis in acute myeloid leukemias (AMLs). RAB27B depletion inhibited the growth of CBL-deficient or NRAS-mutant cell lines. Strikingly, Rab27b deficiency in mice abrogated mutant but not WT NRAS-mediated progenitor cell growth, ERK signaling, and NRAS palmitoylation. Further, Rab27b deficiency significantly reduced myelomonocytic leukemia development in vivo. Mechanistically, RAB27B interacted with ZDHHC9, a palmitoyl acyltransferase that modifies NRAS. By regulating palmitoylation, RAB27B controlled c-RAF/MEK/ERK signaling and affected leukemia development. Importantly, RAB27B depletion in primary human AMLs inhibited oncogenic NRAS signaling and leukemic growth. We further revealed a significant correlation between RAB27B expression and sensitivity to MEK inhibitors in AMLs. Thus, our studies presented a link between RAB proteins and fundamental aspects of RAS posttranslational modification and trafficking, highlighting future therapeutic strategies for RAS-driven cancers.
PMID: 37317963
ISSN: 1558-8238
CID: 5537232
Spatial transcriptomics stratifies psoriatic disease severity by emergent cellular ecosystems
Castillo, Rochelle L; Sidhu, Ikjot; Dolgalev, Igor; Chu, Tinyi; Prystupa, Aleksandr; Subudhi, Ipsita; Yan, Di; Konieczny, Piotr; Hsieh, Brandon; Haberman, Rebecca H; Selvaraj, Shanmugapriya; Shiomi, Tomoe; Medina, Rhina; Girija, Parvathy Vasudevanpillai; Heguy, Adriana; Loomis, Cynthia A; Chiriboga, Luis; Ritchlin, Christopher; Garcia-Hernandez, Maria De La Luz; Carucci, John; Meehan, Shane A; Neimann, Andrea L; Gudjonsson, Johann E; Scher, Jose U; Naik, Shruti
Whereas the cellular and molecular features of human inflammatory skin diseases are well characterized, their tissue context and systemic impact remain poorly understood. We thus profiled human psoriasis (PsO) as a prototypic immune-mediated condition with a high predilection for extracutaneous involvement. Spatial transcriptomics (ST) analyses of 25 healthy, active lesion, and clinically uninvolved skin biopsies and integration with public single-cell transcriptomics data revealed marked differences in immune microniches between healthy and inflamed skin. Tissue-scale cartography further identified core disease features across all active lesions, including the emergence of an inflamed suprabasal epidermal state and the presence of B lymphocytes in lesional skin. Both lesional and distal nonlesional samples were stratified by skin disease severity and not by the presence of systemic disease. This segregation was driven by macrophage-, fibroblast-, and lymphatic-enriched spatial regions with gene signatures associated with metabolic dysfunction. Together, these findings suggest that mild and severe forms of PsO have distinct molecular features and that severe PsO may profoundly alter the cellular and metabolic composition of distal unaffected skin sites. In addition, our study provides a valuable resource for the research community to study spatial gene organization of healthy and inflamed human skin.
PMID: 37267384
ISSN: 2470-9468
CID: 5536642
Vitrification with Dimethyl Sulfoxide Induces Transcriptomic Alteration of Gene and Transposable Element Expression in Immature Human Oocytes
Wiltshire, Ashley; Schaal, Renata; Wang, Fang; Tsou, Tiffany; McKerrow, Wilson; Keefe, David
Despite substantial advancements in the field of cryobiology, oocyte and embryo cryopreservation still compromise developmental competence. Furthermore, dimethyl sulfoxide (DMSO), one of the most commonly used cryoprotectants, has been found to exert potent effects on the epigenetic landscape of cultured human cells, as well as mouse oocytes and embryos. Little is known about its impact on human oocytes. Additionally, few studies investigate the effects of DMSO on transposable elements (TE), the control of which is essential for the maintenance of genomic instability. The objective of this study was to investigate the impact of vitrification with DMSO-containing cryoprotectant on the transcriptome, including on TEs, of human oocytes. Twenty-four oocytes at the GV stage were donated by four healthy women undergoing elective oocyte cryopreservation. Oocytes were paired such that half from each patient were vitrified with DMSO-containing cryoprotectant (Vitrified Cohort), while the other half were snap frozen in phosphate buffer, unexposed to DMSO (Non-Vitrified Cohort). All oocytes underwent RNA sequencing via a method with high fidelity for single cell analysis, and which allows for the analysis of TE expression through Switching Mechanism at the 5'-end of the RNA Transcript sequencing 2 (SMARTseq2), followed by functional enrichment analysis. Of the 27,837 genes identified by SMARTseq2, 7331 (26.3%) were differentially expressed (p < 0.05). There was a significant dysregulation of genes involved in chromatin and histone modification. Mitochondrial function, as well as the Wnt, insulin, mTOR, HIPPO, and MAPK signaling pathways were also altered. The expression of TEs was positively correlated with the expression of PIWIL2, DNMT3A, and DNMT3B, and negatively correlated with age. These findings suggest that the current standard process of oocyte vitrification, involving DMSO-containing cryoprotectant, induces significant transcriptome changes, including those involving TEs.
PMCID:10298107
PMID: 37372413
ISSN: 2073-4425
CID: 5538612
Genetic modifiers modulate phenotypic expression of tafazzin deficiency in a mouse model of Barth syndrome
Wang, Suya; Yazawa, Erika; Keating, Erin M; Mazumdar, Neil; Hauschild, Alexander; Ma, Qing; Wu, Haiyan; Xu, Yang; Shi, Xu; Strathdee, Douglas; Gerszten, Robert E; Schlame, Michael; Pu, William T
Barth syndrome is an X-linked disorder caused by loss-of-function mutations in Tafazzin (TAZ), an acyltransferase that catalyzes remodeling of cardiolipin, a signature phospholipid of the inner mitochondrial membrane. Patients develop cardiac and skeletal muscle weakness, growth delay and neutropenia, although phenotypic expression varies considerably between patients. Taz knockout mice recapitulate many of the hallmark features of the disease. We used mouse genetics to test the hypothesis that genetic modifiers alter the phenotypic manifestations of Taz inactivation. We crossed TazKO/X females in the C57BL6/J inbred strain to males from eight inbred strains and evaluated the phenotypes of first-generation (F1) TazKO/Y progeny, compared to TazWT/Y littermates. We observed that genetic background strongly impacted phenotypic expression. C57BL6/J and CAST/EiJ[F1] TazKO/Y mice developed severe cardiomyopathy, whereas A/J[F1] TazKO/Y mice had normal heart function. C57BL6/J and WSB/EiJ[F1] TazKO/Y mice had severely reduced treadmill endurance, whereas endurance was normal in A/J[F1] and CAST/EiJ[F1] TazKO/Y mice. In all genetic backgrounds, cardiolipin showed similar abnormalities in knockout mice, and transcriptomic and metabolomic investigations identified signatures of mitochondrial uncoupling and activation of the integrated stress response. TazKO/Y cardiac mitochondria were small, clustered and had reduced cristae density in knockouts in severely affected genetic backgrounds but were relatively preserved in the permissive A/J[F1] strain. Gene expression and mitophagy measurements were consistent with reduced mitophagy in knockout mice in genetic backgrounds intolerant of Taz mutation. Our data demonstrate that genetic modifiers powerfully modulate phenotypic expression of Taz loss-of-function and act downstream of cardiolipin, possibly by altering mitochondrial quality control.
PMCID:10244222
PMID: 36917259
ISSN: 1460-2083
CID: 5540782
β-carotene accelerates resolution of atherosclerosis by promoting regulatory T cell expansion in the atherosclerotic lesion
Pinos, Ivan; Coronel, Johana; Albakri, Asma"™A; Blanco, Amparo; McQueen, Patrick; Molina, Donald; Sim, Jaeyoung; Fisher, Edward A.; Amengual, Jaume
β-carotene oxygenase 1 (BCO1) catalyzes the cleavage of β-carotene to form vitamin A. Besides its role in vision, vitamin A regulates the expression of genes involved in lipid metabolism and immune cell differentiation. BCO1 activity is associated with the reduction of plasma cholesterol in humans and mice, while dietary β-carotene reduces hepatic lipid secretion and delays atherosclerosis progression in various experimental models. Here we show that β-carotene also accelerates atherosclerosis resolution in two independent murine models, independently of changes in body weight gain or plasma lipid profile. Experiments in Bco1-/- mice implicate vitamin A production in the effects of β-carotene on atherosclerosis resolution. To explore the direct implication of dietary β-carotene on regulatory T cells (Tregs) differentiation, we utilized anti-CD25 monoclonal antibody infusions. Our data show that β-carotene favors Treg expansion in the plaque, and that the partial inhibition of Tregs mitigates the effect of β-carotene on atherosclerosis resolution. Our data highlight the potential of β-carotene and BCO1 activity in the resolution of atherosclerotic cardiovascular disease.
SCOPUS:85165487128
ISSN: 2050-084x
CID: 5548742
visMOP "“ A Visual Analytics Approach for Multi-omics Pathways
Brich, N.; Schacherer, N.; Hoene, M.; Weigert, C.; Lehmann, R.; Krone, M.
We present an approach for the visual analysis of multi-omics data obtained using high-throughput methods. The term "omics" denotes measurements of different types of biologically relevant molecules like the products of gene transcription (transcriptomics) or the abundance of proteins (proteomics). Current popular visualization approaches often only support analyzing each of these omics separately. This, however, disregards the interconnectedness of different biologically relevant molecules and processes. Consequently, it describes the actual events in the organism suboptimally or only partially. Our visual analytics approach for multi-omics data provides a comprehensive overview and details-on-demand by integrating the different omics types in multiple linked views. To give an overview, we map the measurements to known biological pathways and use a combination of a clustered network visualization, glyphs, and interactive filtering. To ensure the effectiveness and utility of our approach, we designed it in close collaboration with domain experts and assessed it using an exemplary workflow with real-world transcriptomics, proteomics, and lipidomics measurements from mice.
SCOPUS:85164273496
ISSN: 0167-7055
CID: 5548832