Searched for: school:SOM
Department/Unit:Cell Biology
Molecular basis for ebolavirus VP35 suppression of human dendritic cell maturation
Yen, Benjamin; Mulder, Lubbertus C F; Martinez, Osvaldo; Basler, Christopher F
Zaire ebolavirus (EBOV) VP35 is a double-stranded RNA (dsRNA)-binding protein that inhibits RIG-I signaling and alpha/beta interferon (IFN-alpha/beta) responses by both dsRNA-binding-dependent and -independent mechanisms. VP35 also suppresses dendritic cell (DC) maturation. Here, we define the pathways and mechanisms through which VP35 impairs DC maturation. Wild-type VP35 (VP35-WT) and two well-characterized VP35 mutants (F239A and R322A) that independently ablate dsRNA binding and RIG-I inhibition were delivered to primary human monocyte-derived DCs (MDDCs) using a lentivirus-based expression system. VP35-WT suppressed not only IFN-alpha/beta but also proinflammatory responses following stimulation of MDDCs with activators of RIG-I-like receptor (RLR) signaling, including RIG-I activators such as Sendai virus (SeV) or 5'-triphosphate RNA, or MDA5 activators such as encephalomyocarditis virus (EMCV) or poly(I . C). The F239A and R322A mutants exhibited greatly reduced suppression of IFN-alpha/beta and proinflammatory cytokine production following treatment of DCs with RLR agonists. VP35-WT also blocked the upregulation of DC maturation markers and the stimulation of allogeneic T cell responses upon SeV infection, whereas the mutants did not. In contrast to the RLR activators, VP35-WT and the VP35 mutants impaired IFN-beta production induced by Toll-like receptor 3 (TLR3) or TLR4 agonists but failed to inhibit proinflammatory cytokine production induced by TLR2, TLR3, or TLR4 agonists. Furthermore, VP35 did not prevent lipopolysaccharide (LPS)-induced upregulation of surface markers of MDDC maturation and did not prevent LPS-triggered allogeneic T cell stimulation. Therefore, VP35 is a general antagonist of DC responses to RLR activation. However, TLR agonists can circumvent many of the inhibitory effects of VP35. Therefore, it may be possible to counteract EBOV immune evasion by using treatments that bypass the VP35-imposed block to DC maturation. IMPORTANCE: The VP35 protein, which is an inhibitor of RIG-I signaling and alpha/beta interferon (IFN-alpha/beta) responses, has been implicated as an EBOV-encoded factor that contributes to suppression of dendritic cell (DC) function. We used wild-type VP35 and previously characterized VP35 mutants to clarify VP35-DC interactions. Our data demonstrate that VP35 is a general inhibitor of RIG-I-like receptor (RLR) signaling that blocks not only RIG-I- but also MDA5-mediated induction of IFN-alpha/beta responses. Furthermore, in DCs, VP35 also impairs the RLR-mediated induction of proinflammatory cytokine production, upregulation of costimulatory markers, and activation of T cells. These inhibitory activities require VP35 dsRNA-binding activity, an activity previously correlated to VP35 RIG-I inhibitory function. In contrast, while VP35 can inhibit IFN-alpha/beta production induced by TLR3 or TLR4 agonists, this occurs in a dsRNA-independent fashion, and VP35 does not inhibit TLR-mediated expression of proinflammatory cytokines. These data suggest strategies to overcome VP35 inhibition of DC function.
PMCID:4248944
PMID: 25142601
ISSN: 1098-5514
CID: 2286092
Improving Detection of Driver Genes: Power-Law Null Model of Copy Number Variation in Cancer
Loohuis, Loes Olde; Witzel, Andreas; Mishra, Bud
In this paper, we study Copy Number Variation (CNV) data. The underlying process generating CNV segments is generally assumed to be memory-less, giving rise to an exponential distribution of segment lengths. In this paper, we provide evidence from cancer patient data, which suggests that this generative model is too simplistic, and that segment lengths follow a power-law distribution instead. We conjecture a simple preferential attachment generative model that provides the basis for the observed power-law distribution. We then show how an existing statistical method for detecting cancer driver genes can be improved by incorporating the power-law distribution in the null model.
PMID: 26357061
ISSN: 1557-9964
CID: 3122002
Freedom of expression: cell-type-specific gene profiling
Otsuki, Leo; Cheetham, Seth W; Brand, Andrea H
Cell fate and behavior are results of differential gene regulation, making techniques to profile gene expression in specific cell types highly desirable. Many methods now enable investigation at the DNA, RNA and protein level. This review introduces the most recent and popular techniques, and discusses key issues influencing the choice between these such as ease, cost and applicability of information gained. Interdisciplinary collaborations will no doubt contribute further advances, including not just in single cell type but single-cell expression profiling.
PMID: 25174322
ISSN: 1759-7692
CID: 5193262
Low Vitamin D levels predict clinical features of schizophrenia
Cieslak, Kristina; Feingold, Jordyn; Antonius, Daniel; Walsh-Messinger, Julie; Dracxler, Roberta; Rosedale, Mary; Aujero, Nicole; Keefe, David; Goetz, Deborah; Goetz, Raymond; Malaspina, Dolores
Vitamin D plays crucial roles in neuroprotection and neurodevelopment, and low levels are commonly associated with schizophrenia. We considered if the association was spurious or causal by examining the association of Vitamin D with Leukocyte Telomere Length (LTL), a marker of cellular aging. Vitamin D levels in 22 well-characterized schizophrenia cases were examined with respect to symptoms, cognition, and functioning. LTL was assessed using quantitative polymerase chain reaction (qPCR). The results showed that 91% (20) had deficient or insufficient Vitamin D levels, which were associated with excitement and grandiosity, social anhedonia, and poverty of speech. Sex-specific analyses showed strong associations of hypovitamintosis D to negative symptoms and decreased premorbid adjustment in males, and to lesser hallucinations and emotional withdrawal, but increased anti-social aggression in females. In females LTL was furthermore associated with Vitamin D levels. This study demonstrates a relationship of low vitamin D levels with increased cellular aging in females. It is also the first study to demonstrate potential sex-specific profiles among schizophrenia cases with hypovitaminosis.
PMCID:4252834
PMID: 25311777
ISSN: 1573-2509
CID: 1310002
Independent anti-angiogenic capacities of coagulation factors X and Xa
Lange, Soledad; Gonzalez, Ibeth; Pinto, Mauricio P; Arce, Maximiliano; Valenzuela, Rodrigo; Aranda, Evelyn; Elliot, Matias; Alvarez, Marjorie; Henriquez, Soledad; Velasquez, Ethel V; Orge, Felipe; Oliva, Barbara; Gonzalez, Pamela; Villalon, Manuel; Cautivo, Kelly M; Kalergis, Alexis M; Pereira, Karla; Mendoza, Camila; Saez, Claudia; Kato, Sumie; Cuello, Mauricio A; Parborell, Fernanda; Irusta, Griselda; Palma, Veronica; Allende, Miguel L; Owen, Gareth I
Knockout models have shown that the coagulation system has a role in vascular development and angiogenesis. Herein, we report for the first time that zymogen FX and its active form (FXa) possess anti-angiogenic properties. Both the recombinant FX and FXa inhibit angiogenesis in vitro using endothelial EA.hy926 and human umbilical cord vascular endothelial cells (HUVEC). This effect is dependent on the Gla domain of FX. We demonstrate that FX and FXa use different mechanisms: the use of Rivaroxaban (RX) a specific inhibitor of FXa attenuated its anti-angiogenic properties but did not modify the anti-angiogenic effect of FX. Furthermore, only the anti-angiogenic activity of FXa is PAR-1dependent. Using in vivo models, we show that FX and FXa are anti-angiogenic in the zebrafish intersegmental vasculature (ISV) formation and in the chick embryo chorioallantoic membrane (CAM) assays. Our results provide further evidence for the non-hemostatic functions of FX and FXa and demonstrate for the first time a biological role for the zymogen FX.
PMID: 24615682
ISSN: 1097-4652
CID: 2559392
Chemokine signaling in development and disease
Wang, John; Knaut, Holger
Chemokines are a group of small, secreted molecules that signal through G protein-coupled receptors to promote cell survival and proliferation and to provide directional guidance to migrating cells. CXCL12 is one of the most evolutionary conserved chemokines and signals through the chemokine receptor CXCR4 to guide cell migration during embryogenesis, immune cell trafficking and cancer metastasis. Here and in the accompanying poster, we provide an overview of chemokine signaling, focusing on CXCL12, and we highlight some of the different chemokine-dependent strategies used to guide migrating cells.
PMCID:4302920
PMID: 25371357
ISSN: 0950-1991
CID: 1341152
PCP4 regulates Purkinje cell excitability and cardiac rhythmicity
Kim, Eugene E; Shekhar, Akshay; Lu, Jia; Lin, Xianming; Liu, Fang-Yu; Zhang, Jie; Delmar, Mario; Fishman, Glenn I
Cardiac Purkinje cells are important triggers of ventricular arrhythmias associated with heritable and acquired syndromes; however, the mechanisms responsible for this proarrhythmic behavior are incompletely understood. Here, through transcriptional profiling of genetically labeled cardiomyocytes, we identified expression of Purkinje cell protein-4 (Pcp4), a putative regulator of calmodulin and Ca2+/calmodulin-dependent kinase II (CaMKII) signaling, exclusively within the His-Purkinje network. Using Pcp4-null mice and acquired cardiomyopathy models, we determined that reduced expression of PCP4 is associated with CaMKII activation, abnormal electrophysiology, dysregulated intracellular calcium handling, and proarrhythmic behavior in isolated Purkinje cells. Pcp4-null mice also displayed profound autonomic dysregulation and arrhythmic behavior in vivo. Together, these results demonstrate that PCP4 regulates cardiac excitability through both Purkinje cell-autonomous and central mechanisms and identify this modulator of CaMKII signaling as a potential arrhythmia-susceptibility candidate.
PMCID:4321194
PMID: 25295538
ISSN: 0021-9738
CID: 1299982
Identification of a Face Enhancer Reveals Direct Regulation of LIM homeobox 8 (Lhx8) by Wingless-Int (WNT)/beta-catenin Signaling
Landin Malt, Andre; Cesario, Jeffry M; Tang, Zuojian; Brown, Stuart; Jeong, Juhee
Development of the mammalian face requires a large number of genes that are expressed with spatio-temporal specificity, and transcriptional regulation mediated by enhancers plays a key role in the precise control of gene expression. Using chromatin immunoprecipitation for a histone marker of active enhancers, we generated a genome-wide map of candidate enhancers from the maxillary arch (primordium for the upper jaw) of mouse embryos. Furthermore, we confirmed multiple novel craniofacial enhancers near the genes implicated in human palate defects through functional assays. We characterized in detail one of the enhancers (Lhx8_enh1) located upstream of Lhx8, a key regulatory gene for craniofacial development. Lhx8_enh1 contained an evolutionarily conserved binding site for Lymphoid Enhancer Factor (LEF)/T-Cell Factor (TCF) family proteins, which mediate the transcriptional regulation by WNT/beta- catenin signaling pathway. We demonstrated in vitro that WNT/beta-catenin signaling was indeed essential for the expression of Lhx8 in the maxillary arch cells, and that Lhx8_enh1 was a direct target of WNT/beta-catenin pathway. Together, we uncovered a molecular mechanism for the regulation of Lhx8, and provided valuable resources for further investigation into the gene regulatory network of craniofacial development.
PMCID:4215213
PMID: 25190800
ISSN: 0021-9258
CID: 1173362
MicroRNAs and cancer stem cells: the sword and the shield
Sun, X; Jiao, X; Pestell, T G; Fan, C; Qin, S; Mirabelli, E; Ren, H; Pestell, R G
Emerging chemotherapy drugs and targeted therapies have been widely applied in anticancer treatment and have given oncologists a promising future. Nevertheless, regeneration and recurrence are still huge obstacles on the way to cure cancer. Cancer stem cells (CSCs) are capable of self-renewal, tumor initiation, recurrence, metastasis, therapy resistance, and reside as a subset in many, if not all, cancers. Therefore, therapeutics specifically targeting and killing CSCs are being identified, and may be promising and effective strategies to eliminate cancer. MicroRNAs (miRNAs, miRs), small noncoding RNAs regulating gene expression in a post-transcriptional manner, are dysregulated in most malignancies and are identified as important regulators of CSCs. However, limited knowledge exists for biological and molecular mechanism by which miRNAs regulate CSCs. In this article, we review CSCs, miRNAs and the interactions between miRNA regulation and CSCs, with a specific focus on the molecular mechanisms and clinical applications. This review will help us to know in detail how CSCs are regulated by miRNAs networks and also help to develop more effective and secure miRNA-based clinical therapies.
PMID: 24240682
ISSN: 1476-5594
CID: 5206402
Galectin-4-mediated transcytosis of transferrin receptor
Perez Bay, Andres E; Schreiner, Ryan; Benedicto, Ignacio; Rodriguez-Boulan, Enrique J
Some native epithelia, e.g. Retinal Pigment Epithelium (RPE) and Kidney Proximal Tubule (KPT) constitutively lack the basolateral sorting adaptor AP-1B; this results in many basolateral plasma membrane proteins repositioned to the apical domain, where they perform essential functions for their host organs. We recently reported the underlying apical polarity reversal mechanism: in the absence of AP-1B-mediated basolateral sorting, basolateral proteins are shuttled to the apical plasma membrane via a novel transcytotic pathway mediated by the plus-end kinesin KIF16B. Here, we demonstrate that this apical transcytotic pathway requires apical sorting of basolateral proteins mediated by apical signals and galectin-4. Using RPE and KPT cell lines, and AP-1B knocked-down MDCK cells, we show that mutation of the N-glycan linked to asparagine 727 in the basolateral marker Transferrin Receptor (TfR) or knock-down of galectin-4 inhibits TfR transcytosis to apical recycling endosomes and the apical plasma membrane and promotes TfR lysosomal targeting/degradation. Our results report a novel role of galectins in basolateral to apical epithelial transcytosis.
PMCID:4197088
PMID: 25179596
ISSN: 0021-9533
CID: 1180712