Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14166


The sodium channel complex at the intercalated disc: Outside the domains of SAP97?

Delmar, Mario
PMID: 25446154
ISSN: 1547-5271
CID: 1370322

Regulation of Cell Death by IAPs and Their Antagonists

Vasudevan, Deepika; Ryoo, Hyung Don
Inhibitors of apoptosis (IAPs) family of genes encode baculovirus IAP-repeat domain-containing proteins with antiapoptotic function. These proteins also contain RING or UBC domains and act by binding to major proapoptotic factors and ubiquitylating them. High levels of IAPs inhibit caspase-mediated apoptosis. For these cells to undergo apoptosis, IAP function must be neutralized by IAP-antagonists. Mammalian IAP knockouts do not exhibit obvious developmental phenotypes, but the cells are more sensitized to apoptosis in response to injury. Loss of the mammalian IAP-antagonist ARTS results in reduced stem cell apoptosis. In addition to the antiapoptotic properties, IAPs regulate the innate immune response, and the loss of IAP function in humans is associated with immunodeficiency. The roles of IAPs in Drosophila apoptosis regulation are more apparent, where the loss of IAP1, or the expression of IAP-antagonists in Drosophila cells, is sufficient to trigger apoptosis. In this organism, apoptosis as a fate is conferred by the transcriptional induction of the IAP-antagonists. Many signaling pathways often converge on shared enhancer regions of IAP-antagonists. Cell death sensitivity is further regulated by posttranscriptional mechanisms, including those regulated by kinases, miRs, and ubiquitin ligases. These mechanisms are employed to eliminate damaged or virus-infected cells, limit neuroblast (neural stem cell) numbers, generate neuronal diversity, and sculpt tissue morphogenesis.
PMCID:4861076
PMID: 26431568
ISSN: 1557-8933
CID: 1894302

HOW MANY CARRIERS ARE YOU MISSING?: THE VALUE OF EXPANDED CARRIER SCREENING [Meeting Abstract]

Yarnall, S; Bristow, SL; Kellogg, GR; Kumar, N; Rodriguez, S; Shraga, R; Gold, M; Noyes, N; Keefe, DL
ISI:000380018900168
ISSN: 1556-5653
CID: 2220002

Functional Implications of Domain Organization Within Prokaryotic Rhomboid Proteases

Panigrahi, Rashmi; Lemieux, M Joanne
Intramembrane proteases are membrane embedded enzymes that cleave transmembrane substrates. This interesting class of enzyme and its water mediated substrate cleavage mechanism occurring within the hydrophobic lipid bilayer has drawn the attention of researchers. Rhomboids are a family of ubiquitous serine intramembrane proteases. Bacterial forms of rhomboid proteases are mainly composed of six transmembrane helices that are preceded by a soluble N-terminal domain. Several crystal structures of the membrane domain of the E. coli rhomboid protease ecGlpG have been solved. Independently, the ecGlpG N-terminal cytoplasmic domain structure was solved using both NMR and protein crystallography. Despite these structures, we still do not know the structure of the full-length protein, nor do we know the functional role of these domains in the cell. This chapter will review the structural and functional roles of the different domains associated with prokaryotic rhomboid proteases. Lastly, we will address questions remaining in the field.
PMID: 26621464
ISSN: 0065-2598
CID: 2286542

Public sequence databases

Chapter by: Brown, Stuart
in: Next-generation DNA sequencing informatics by Brown, Stuart M [Eds]
Cold Spring Harbor, New York : Cold Spring Harbor Laboratory Press, 2015
pp. 73-88
ISBN: 1621821234
CID: 1681482

RNA Interference-Guided Targeting of Hepatitis C Virus Replication with Antisense Locked Nucleic Acid-Based Oligonucleotides Containing 8-oxo-dG Modifications

Mutso, Margit; Nikonov, Andrei; Pihlak, Arno; Zusinaite, Eva; Viru, Liane; Selyutina, Anastasia; Reintamm, Tonu; Kelve, Merike; Saarma, Mart; Karelson, Mati; Merits, Andres
The inhibitory potency of an antisense oligonucleotide depends critically on its design and the accessibility of its target site. Here, we used an RNA interference-guided approach to select antisense oligonucleotide target sites in the coding region of the highly structured hepatitis C virus (HCV) RNA genome. We modified the conventional design of an antisense oligonucleotide containing locked nucleic acid (LNA) residues at its termini (LNA/DNA gapmer) by inserting 8-oxo-2'-deoxyguanosine (8-oxo-dG) residues into the central DNA region. Obtained compounds, designed with the aim to analyze the effects of 8-oxo-dG modifications on the antisense oligonucleotides, displayed a unique set of properties. Compared to conventional LNA/DNA gapmers, the melting temperatures of the duplexes formed by modified LNA/DNA gapmers and DNA or RNA targets were reduced by approximately 1.6-3.3 degrees C per modification. Comparative transfection studies showed that small interfering RNA was the most potent HCV RNA replication inhibitor (effective concentration 50 (EC50): 0.13 nM), whereas isosequential standard and modified LNA/DNA gapmers were approximately 50-fold less efficient (EC50: 5.5 and 7.1 nM, respectively). However, the presence of 8-oxo-dG residues led to a more complete suppression of HCV replication in transfected cells. These modifications did not affect the efficiency of RNase H cleavage of antisense oligonucleotide:RNA duplexes but did alter specificity, triggering the appearance of multiple cleavage products. Moreover, the incorporation of 8-oxo-dG residues increased the stability of antisense oligonucleotides of different configurations in human serum.
PMCID:4454572
PMID: 26039055
ISSN: 1932-6203
CID: 2505392

Cytomegalovirus Uveitis with Hypopyon Mimicking Bacterial Endophthalmitis

Yoshida, Atsushi; Obata, Hiroto; Kawashima, Hidetoshi
We report an 83-year-old immune-competent female with unilateral endophthalmitis extraordinarily caused by cytomegalovirus (CMV). Since she was suspected of suffering possible bacterial endophthalmitis, she was referred to our hospital. At the first visit, hypopyon in the anterior chamber and the opacity of vitreous body were observed in the left eye. The best-corrected visual acuity (BCVA) of the left eye was counting fingers and the intraocular pressure (IOP) was 20 mmHg. Bacterial and fungus culture of the aqueous humor revealed no infection. However, the density of corneal endothelial cell was less than the measurable range and CMV was detected by PCR of the aqueous humor. She was immune-competent and the data indicated neither systemic infections nor diseases. Systemic valganciclovir and corticosteroid were administered. After that, hypopyon in the anterior chamber and the opacity of vitreous body of the left eye were improved, and the BCVA of the left eye was 20/200 one year after the first visit. However, the inflammation of the anterior chamber recurred accompanied by elevated IOP after the discontinuance of administering valganciclovir. CMV-induced uveitis accompanied with hypopyon is quite rare. Therefore, it can be easily misdiagnosed as bacterial endophthalmitis.
PMCID:4442280
PMID: 26078897
ISSN: 2090-6722
CID: 2328812

The P4-ATPase TAT-5 inhibits the outward budding of the plasma membrane in C. elegans embryos [Meeting Abstract]

Wehman, AM; Nance, J
ISI:000362570604087
ISSN: 1742-4658
CID: 1821912

Destabilization of pluripotency in the absence of Mad2l2

Pirouz, Mehdi; Rahjouei, Ali; Shamsi, Farnaz; Eckermann, Kolja Neil; Salinas-Riester, Gabriela; Pommerenke, Claudia; Kessel, Michael
The induction and maintenance of pluripotency requires the expression of several core factors at appropriate levels (Oct4, Sox2, Klf4, Prdm14). A subset of these proteins (Oct4, Sox2, Prdm14) also plays crucial roles for the establishment of primordial germ cells (PGCs). Here we demonstrate that the Mad2l2 (MAD2B, Rev7) gene product is not only required by PGCs, but also by pluripotent embryonic stem cells (ESCs), depending on the growth conditions. Mad2l2(-/-) ESCs were unstable in LIF/serum medium, and differentiated into primitive endoderm. However, they could be stably propagated using small molecule inhibitors of MAPK signaling. Several components of the MAPK cascade were up- or downregulated even in undifferentiated Mad2l2(-/-) ESCs. Global levels of repressive histone H3 variants were increased in mutant ESCs, and the epigenetic signatures on pluripotency-, primitive endoderm-, and MAPK-related loci differed. Thus, H3K9me2 repressed the Nanog promoter, while the promoter of Gata4 lost H3K27me3 and became de-repressed in LIF/serum condition. Promoters associated with genes involved in MAPK signaling also showed misregulation of these histone marks. Such epigenetic modifications could be indirect consequences of mutating Mad2l2. However, our previous observations suggested the histone methyltransferases as direct (G9a) or indirect (Ezh2) targets of Mad2l2. In effect, the intricate balance necessary for pluripotency becomes perturbed in the absence of Mad2l2.
PMCID:4614513
PMID: 25928475
ISSN: 1551-4005
CID: 5150372

Nanoscale Visualization of Functional Adhesion/Excitability Nodes at the Intercalated Disc. [Meeting Abstract]

Leo-Macias, Alejandra; Agullo-Pascual, Esperanza; Sanchez-Alonso, Jose L; Keegan, Sarah; Lin, Xianming; Liang, Feng-Xia; Korchev, Yuri E; Gorelik, Julia; Fenyo, David; Rothenberg, Eli; Delmar, Mario
ISI:000365188500026
ISSN: 1540-7748
CID: 1873012