Try a new search

Format these results:

Searched for:

person:dnl2

Total Results:

60


Synaptic transmission and the susceptibility of HIV infection to anti-viral drugs

Komarova, Natalia L; Levy, David N; Wodarz, Dominik
Cell-to-cell viral transmission via virological synapses has been argued to reduce susceptibility of the virus population to anti-viral drugs through multiple infection of cells, contributing to low-level viral persistence during therapy. Using a mathematical framework, we examine the role of synaptic transmission in treatment susceptibility. A key factor is the relative probability of individual virions to infect a cell during free-virus and synaptic transmission, a currently unknown quantity. If this infection probability is higher for free-virus transmission, then treatment susceptibility is lowest if one virus is transferred per synapse, and multiple infection of cells increases susceptibility. In the opposite case, treatment susceptibility is minimized for an intermediate number of virions transferred per synapse. Hence, multiple infection via synapses does not simply lower treatment susceptibility. Without further experimental investigations, one cannot conclude that synaptic transmission provides an additional mechanism for the virus to persist at low levels during anti-viral therapy.
PMCID:3696900
PMID: 23811684
ISSN: 2045-2322
CID: 1870942

Increased burst size in multiply infected cells can alter basic virus dynamics

Cummings, Kara W; Levy, David N; Wodarz, Dominik
BACKGROUND:The dynamics of viral infections have been studied extensively in a variety of settings, both experimentally and with mathematical models. The majority of mathematical models assumes that only one virus can infect a given cell at a time. It is, however, clear that especially in the context of high viral load, cells can become infected with multiple copies of a virus, a process called coinfection. This has been best demonstrated experimentally for human immunodeficiency virus (HIV), although it is thought to be equally relevant for a number of other viral infections. In a previously explored mathematical model, the viral output from an infected cell does not depend on the number of viruses that reside in the cell, i.e. viral replication is limited by cellular rather than viral factors. In this case, basic virus dynamics properties are not altered by coinfection. RESULTS:Here, we explore the alternative assumption that multiply infected cells are characterized by an increased burst size and find that this can fundamentally alter model predictions. Under this scenario, establishment of infection may not be solely determined by the basic reproductive ratio of the virus, but can depend on the initial virus load. Upon infection, the virus population need not follow straight exponential growth. Instead, the exponential rate of growth can increase over time as virus load becomes larger. Moreover, the model suggests that the ability of anti-viral drugs to suppress the virus population can depend on the virus load upon initiation of therapy. This is because more coinfected cells, which produce more virus, are present at higher virus loads. Hence, the degree of drug resistance is not only determined by the viral genotype, but also by the prevalence of coinfected cells. CONCLUSIONS:Our work shows how an increased burst size in multiply infected cells can alter basic infection dynamics. This forms the basis for future experimental testing of model assumptions and predictions that can distinguish between the different scenarios.
PMCID:3482397
PMID: 22569346
ISSN: 1745-6150
CID: 3826572

Effect of synaptic transmission on viral fitness in HIV infection

Komarova, Natalia L; Levy, David N; Wodarz, Dominik
HIV can spread through its target cell population either via cell-free transmission, or by cell-to-cell transmission, presumably through virological synapses. Synaptic transmission entails the transfer of tens to hundreds of viruses per synapse, a fraction of which successfully integrate into the target cell genome. It is currently not understood how synaptic transmission affects viral fitness. Using a mathematical model, we investigate how different synaptic transmission strategies, defined by the number of viruses passed per synapse, influence the basic reproductive ratio of the virus, R(0), and virus load. In the most basic scenario, the model suggests that R(0) is maximized if a single virus particle is transferred per synapse. R(0) decreases and the infection eventually cannot be maintained for larger numbers of transferred viruses, because multiple infection of the same cell wastes viruses that could otherwise enter uninfected cells. To explain the relatively large number of HIV copies transferred per synapse, we consider additional biological assumptions under which an intermediate number of viruses transferred per synapse could maximize R(0). These include an increased burst size in multiply infected cells, the saturation of anti-viral factors upon infection of cells, and rate limiting steps during the process of synapse formation.
PMCID:3499495
PMID: 23166585
ISSN: 1932-6203
CID: 1870922

HLA-DR+ CD38+ CD4+ T lymphocytes have elevated CCR5 expression and produce the majority of R5-tropic HIV-1 RNA in vivo

Meditz, Amie L; Haas, Michelle K; Folkvord, Joy M; Melander, Kelsey; Young, Russ; McCarter, Martin; Mawhinney, Samantha; Campbell, Thomas B; Lie, Yolanda; Coakley, Eoin; Levy, David N; Connick, Elizabeth
Percentages of activated T cells correlate with HIV-1 disease progression, but the underlying mechanisms are not fully understood. We hypothesized that HLA-DR(+) CD38(+) (DR(+) 38(+)) CD4(+) T cells produce the majority of HIV-1 due to elevated expression of CCR5 and CXCR4. In phytohemagglutinin (PHA)-stimulated CD8-depleted peripheral blood mononuclear cells (PBMC) infected with HIV-1 green fluorescent protein (GFP) reporter viruses, DR(-) 38(+) T cells constituted the majority of CCR5 (R5)-tropic (median, 62%) and CXCR4 (X4)-tropic HIV-1-producing cells (median, 61%), although cell surface CCR5 and CXCR4 were not elevated in this subset of cells. In lymph nodes from untreated individuals infected with R5-tropic HIV-1, percentages of CCR5(+) cells were elevated in DR(+) 38(+) CD4(+) T cells (median, 36.4%) compared to other CD4(+) T-cell subsets (median values of 5.7% for DR(-) 38(-) cells, 19.4% for DR(+) 38(-) cells, and 7.6% for DR(-) 38(+) cells; n = 18; P < 0.001). In sorted CD8(-) lymph node T cells, median HIV-1 RNA copies/10(5) cells was higher for DR(+) 38(+) cells (1.8 x 10(6)) than for DR(-) 38(-) (0.007 x 10(6)), DR(-) 38(+) (0.064 x 10(6)), and DR(+) 38(-) (0.18 x 10(6)) subsets (n = 8; P < 0.001 for all). After adjusting for percentages of subsets, a median of 87% of viral RNA was harbored by DR(+) 38(+) cells. Percentages of CCR5(+) CD4(+) T cells and concentrations of CCR5 molecules among subsets predicted HIV-1 RNA levels among CD8(-) DR/38 subsets (P < 0.001 for both). Median HIV-1 DNA copies/10(5) cells was higher in DR(+) 38(+) cells (5,360) than in the DR(-) 38(-) (906), DR(-) 38(+) (814), and DR(+) 38(-) (1,984) subsets (n = 7; P </= 0.031). Thus, DR(+) 38(+) CD4(+) T cells in lymph nodes have elevated CCR5 expression, are highly susceptible to infection with R5-tropic virus, and produce the majority of R5-tropic HIV-1. PBMC assays failed to recapitulate in vivo findings, suggesting limited utility. Strategies to reduce numbers of DR(+) 38(+) CD4(+) T cells may substantially inhibit HIV-1 replication
PMCID:3196402
PMID: 21813616
ISSN: 1098-5514
CID: 155464

Effect of multiple infection of cells on the evolutionary dynamics of HIV in vivo: implications for host adaptation mechanisms

Wodarz, Dominik; Levy, David N
The dynamics between human immunodeficiency virus type 1 and the immune system have been studied both experimentally and mathematically, exploring aspects of host adaptation and viral mechanisms to escape host control. The majority of this work, however, has been performed assuming that any cell can only be infected by one copy of the virus. In recent years, it has become clear that multiple copies of the virus can infect the same cell, a process we refer to as co-infection. Here, we review this topic and discuss how immune control of the infection and the ability of the virus to escape immune control is affected by co-infection
PMID: 21768164
ISSN: 1535-3699
CID: 155343

Multiploid Inheritance of HIV-1 during Cell-to-Cell Infection

Del Portillo, Armando; Tripodi, Joseph; Najfeld, Vesna; Wodarz, Dominik; Levy, David N; Chen, Benjamin K
During cell-to-cell transmission of human immunodeficiency virus type 1 (HIV-1), many viral particles can be simultaneously transferred from infected to uninfected CD4 T cells through structures called virological synapses (VS). Here we directly examine how cell-free and cell-to-cell infections differ from infections initiated with cell-free virus in the number of genetic copies that are transmitted from one generation to the next, i.e., the genetic inheritance. Following exposure to HIV-1-expressing cells, we show that target cells with high viral uptake are much more likely to become infected. Using T cells that coexpress distinct fluorescent HIV-1 variants, we show that multiple copies of HIV-1 can be cotransmitted across a single VS. In contrast to cell-free HIV-1 infection, which titrates with Poisson statistics, the titration of cell-associated HIV-1 to low rates of overall infection generates a constant fraction of the newly infected cells that are cofluorescent. Triple infection was also readily detected when cells expressing three fluorescent viruses were used as donor cells. A computational model and a statistical model are presented to estimate the degree to which cofluorescence underestimates coinfection frequency. Lastly, direct detection of HIV-1 proviruses using fluorescence in situ hybridization confirmed that significantly more HIV-1 DNA copies are found in primary T cells infected with cell-associated virus than in those infected with cell-free virus. Together, the data suggest that multiploid inheritance is common during cell-to-cell HIV-1 infection. From this study, we suggest that cell-to-cell infection may explain the high copy numbers of proviruses found in infected cells in vivo and may provide a mechanism through which HIV preserves sequence heterogeneity in viral quasispecies through genetic complementation
PMCID:3126592
PMID: 21543479
ISSN: 1098-5514
CID: 155316

Effect of different modes of viral spread on the dynamics of multiply infected cells in human immunodeficiency virus infection

Wodarz, Dominik; Levy, David N
Infection of individual cells with more than one HIV particle is an important feature of HIV replication, which may contribute to HIV pathogenesis via the occurrence of recombination, viral complementation and other outcomes that influence HIV replication and evolutionary dynamics. A previous mathematical model of co-infection has shown that the number of cells infected with i viruses correlates with the ith power of the singly infected cell population, and this has partly been observed in experiments. This model, however, assumed that virus spread from cell to cell occurs only via free virus particles, and that viruses and cells mix perfectly. Here, we introduce a cellular automaton model that takes into account different modes of virus spread among cells, including cell to cell transmission via the virological synapse, and spatially constrained virus spread. In these scenarios, it is found that the number of multiply infected cells correlates linearly with the number of singly infected cells, meaning that co-infection plays a greater role at lower virus loads. The model further indicates that current experimental systems that are used to study co-infection dynamics fail to reflect the true dynamics of multiply infected cells under these specific assumptions, and that new experimental techniques need to be designed to distinguish between the different assumptions
PMCID:3033025
PMID: 20659927
ISSN: 1742-5662
CID: 155385

CD8 T cell response and evolutionary pressure to HIV-1 cryptic epitopes derived from antisense transcription

Bansal, Anju; Carlson, Jonathan; Yan, Jiyu; Akinsiku, Olusimidele T; Schaefer, Malinda; Sabbaj, Steffanie; Bet, Anne; Levy, David N; Heath, Sonya; Tang, Jianming; Kaslow, Richard A; Walker, Bruce D; Ndung'u, Thumbi; Goulder, Philip J; Heckerman, David; Hunter, Eric; Goepfert, Paul A
Retroviruses pack multiple genes into relatively small genomes by encoding several genes in the same genomic region with overlapping reading frames. Both sense and antisense HIV-1 transcripts contain open reading frames for known functional proteins as well as numerous alternative reading frames (ARFs). At least some ARFs have the potential to encode proteins of unknown function, and their antigenic properties can be considered as cryptic epitopes (CEs). To examine the extent of active immune response to virally encoded CEs, we analyzed human leukocyte antigen class I-associated polymorphisms in HIV-1 gag, pol, and nef genes from a large cohort of South Africans with chronic infection. In all, 391 CEs and 168 conventional epitopes were predicted, with the majority (307; 79%) of CEs derived from antisense transcripts. In further evaluation of CD8 T cell responses to a subset of the predicted CEs in patients with primary or chronic infection, both sense- and antisense-encoded CEs were immunogenic at both stages of infection. In addition, CEs often mutated during the first year of infection, which was consistent with immune selection for escape variants. These findings indicate that the HIV-1 genome might encode and deploy a large potential repertoire of unconventional epitopes to enhance vaccine-induced antiviral immunity
PMCID:2812545
PMID: 20065064
ISSN: 0022-1007
CID: 155004

The use of immune complex vaccines to enhance antibody responses against neutralizing epitopes on HIV-1 envelope gp120

Hioe, Catarina E; Visciano, Maria Luisa; Kumar, Rajnish; Liu, Jianping; Mack, Ethan A; Simon, Rachel E; Levy, David N; Tuen, Michael
The capacity of immune complexes to augment antibody (Ab) responses is well established. The enhancing effects of immune complexes have been attributed mainly to Fc-mediated adjuvant activity, while the ability of Abs to induce antigenic alterations of specific epitopes as a result of immune complex formation has been less well studied. Previously we have shown that the interaction of anti-CD4-binding site (CD4bs) Abs with HIV-1 gp120 induces conformation changes that lead to enhanced antigenicity and immunogenicity of neutralizing epitopes in the V3 loop. The present study shows that significant increases in the antigenicity of the V3 and C1 regions of gp120 were attained for several subtype B gp120s and a subtype C gp120 upon immune complex formation with the anti-CD4bs monoclonal Ab (mAb) 654-D. Such enhancement was observed with immune complexes made with other anti-CD4bs mAbs and anti-V2 mAbs, but not with anti-C2 mAbs, indicating this activity is determined by antigen specificity of the mAb that formed the immune complex. When immune complexes of gp120(LAI)/654-D and gp120(JRFL)/654-D were tested as immunogens in mice, serum Abs to gp120 and V3 were generated at significantly higher titers than those induced by the respective uncomplexed gp120s. Notably, the anti-V3 Ab responses had distinct fine specificities; gp120(JRFL)/654-D stimulated more cross-reactive anti-V3 Abs than gp120(LAI)/654-D. Neutralizing activities against viruses with heterologous envelope were also detected in sera of mice immunized with gp120(JRFL)/654-D, although the neutralization breadth was still limited. Overall this study shows the potential use of gp120/Ab complexes to augment the immunogenicity of HIV-1 envelope gp120, but further improvements are needed to elicit virus-neutralizing Ab responses with higher potency and breadth.
PMCID:2789659
PMID: 19879224
ISSN: 0264-410x
CID: 156168

Multiple HIV-1 infection of cells and the evolutionary dynamics of cytotoxic T lymphocyte escape mutants

Wodarz, Dominik; Levy, David N
Cytotoxic T lymphocytes (CTL) are an important branch of the immune system, killing virus-infected cells. Many viruses can mutate so that infected cells are not killed by CTL anymore. This escape can contribute to virus persistence and disease. A prominent example is HIV-1. The evolutionary dynamics of CTL escape mutants in vivo have been studied experimentally and mathematically, assuming that a cell can only be infected with one HIV particle at a time. However, according to data, multiple virus particles frequently infect the same cell, a process called coinfection. Here, we study the evolutionary dynamics of CTL escape mutants in the context of coinfection. A mathematical model suggests that an intermediate strength of the CTL response against the wild-type is most detrimental for an escape mutant, minimizing overall virus load and even leading to its extinction. A weaker or, paradoxically, stronger CTL response against the wild-type both lead to the persistence of the escape mutant and higher virus load. It is hypothesized that an intermediate strength of the CTL response, and thus the suboptimal virus suppression observed in HIV-1 infection, might be adaptive to minimize the impact of existing CTL escape mutants on overall virus load
PMID: 19486149
ISSN: 1558-5646
CID: 155466