Try a new search

Format these results:

Searched for:

person:bea4

Total Results:

314


Gender and ethnic differences in a case-control study of dyslipidemia: using the apolipoprotein A-V gene as an exemplar in cardiovascular genetics

Wung, Shu-Fen; Aouizerat, Bradley E
Common, complex genetic disorders such as coronary heart disease (CHD) frequently show large population differences, contributing to health disparities. It is also well known that CHD risk factor profiles and the frequency of coronary events differ by gender. Study of premature CHD has revealed that apolipoproteins are important discriminating factors for distinguishing individuals with CHD. Recent findings indicated that apolipoprotein A-V (APOA-V) gene promoter polymorphisms are an important determinant of plasma triglycerides (TG) and lipoprotein cholesterol, and a risk factor for CHD. Variations in APOA-V may have varying impacts in different ethnic groups. The purpose of this interdisciplinary genetic research project was to determine (1) the association of the APOA-V polymorphisms with lipoprotein profiles, and (2) the gender and ethnic differences in the T-1131C promoter polymorphism of the APOA-V gene in individuals with dyslipidemia versus controls. Results indicate that the minor -1131C allele (CC homozygotes + CT heterozygotes) was associated with elevated plasma TG (p = 0.007), very low density lipoprotein (VLDL)-TG (p = 0.019), LDL-TG (p = 0.004), high-density-lipoprotein (HDL)-TG (p < 0.001), and VLDL-cholesterol (p = 0.008). We found a striking elevation in the frequency of the minor C allele in Asians (p < 0.001) compared to Europeans. We also found a significant difference in genotype frequency between men and women in Asians (p = 0.031) and Europeans (p < 0.01). Remarkably, Asian women with the C allele have a 36% increase in TG compared to Asian women homozygous for the T allele. In summary, we found significant ethnic-specific and gender-based differences in the frequency of the minor allele of the -1131 APOA-V gene promoter polymorphism. Identification of genetic variations among ethnic groups and between genders may have significant potential for a better understanding of the development of cardiovascular disease.
PMID: 14959997
ISSN: 1541-6577
CID: 1564612

Genome scan for blood pressure in Dutch dyslipidemic families reveals linkage to a locus on chromosome 4p

Allayee, H; de Bruin, T W; Michelle Dominguez, K; Cheng, L S; Ipp, E; Cantor, R M; Krass, K L; Keulen, E T; Aouizerat, B E; Lusis, A J; Rotter, J I
Genes contributing to common forms of hypertension are largely unknown. A number of studies in humans and in animal models have revealed associations between insulin resistance, dyslipidemia, and elevated hypertension. To identify genes contributing to blood pressure (BP) variation associated with insulin-resistant dyslipidemia, we conducted a genome-wide scan for BP in a set of 18 Dutch families exhibiting the common lipid disorder familial combined hyperlipidemia. Our results reveal a locus on chromosome 4 that exhibits a significant lod score of 3.9 with systolic BP. In addition, this locus also appears to influence plasma free fatty acid levels (lod=2.4). After adjustment for age and gender, the lod score for systolic BP increased to 4.6, whereas the lod score for free fatty acid levels did not change. The chromosome 4 locus contains an attractive candidate gene, alpha-adducin, which has been associated with altered BP in animal studies and in some human populations. However, we found no evidence for an association between 2 intragenic alpha-adducin polymorphisms and systolic BP in this sample. We also observed suggestive evidence for linkage (lod=1.8) of diastolic BP to the lipoprotein lipase gene locus on chromosome 8p, supporting a finding previously observed in a separate insulin-resistant population. In addition, we also obtained suggestive evidence for linkage of systolic BP (lod=2.4) and plasma apolipoprotein B levels (lod=2.0) to a locus on proximal chromosome 19p. In conclusion, our genome scan results support the existence of multiple genetic factors that can influence both BP and plasma lipid parameters.
PMID: 11641285
ISSN: 1524-4563
CID: 1564622

A genetic mutation in the peroxisome proliferator-activated receptor alpha gene in patients with non-alcoholic steatohepatitis. [Meeting Abstract]

Merriman, RB; Aouizerat, BE; Molloy, MJ; Kane, JP; Bacon, B; Bass, NM
ISI:000171224701069
ISSN: 0270-9139
CID: 1564752

Genome scan for adiposity in Dutch dyslipidemic families reveals novel quantitative trait loci for leptin, body mass index and soluble tumor necrosis factor receptor superfamily 1A

van der Kallen, C J; Cantor, R M; van Greevenbroek, M M; Geurts, J M; Bouwman, F G; Aouizerat, B E; Allayee, H; Buurman, W A; Lusis, A J; Rotter, J I; de Bruin, T W
OBJECTIVE: To search for novel genes contributing to adiposity in familial combined hyperlipidemia (FCH), a disorder characterized by abdominal obesity, hyperlipidemia and insulin resistance, using a 10cM genome-wide scan. DESIGN: Plasma leptin and soluble tumor necrosis factor receptor superfamily members 1A and 1B (sTNFRSF1A and sTNFRSF1B, also known as sTNFR1 and sTNFR2) were analyzed as unadjusted and adjusted quantitative phenotypes of adiposity, in addition to body mass index (BMI), in multipoint and single-point analyses. In the second stage of analysis, an important chromosome 1 positional candidate gene, the leptin receptor (LEPR), was studied. SUBJECTS: Eighteen Dutch pedigrees with familial combined hyperlipidemia (FCH) (n= 198) were analyzed to search for chromosomal regions harboring genes contributing to adiposity. RESULTS: Multipoint analysis of the genome scan data identified linkage (log of odds, LOD, 3.4) of leptin levels to a chromosomal region defined by D1S3728 and D1S1665, flanking the leptin receptor (LEPR) gene by approximately 9 and 3 cM, respectively. The LOD score decreased to 1.8 with age- and gender-adjusted leptin levels. Notably, BMI also mapped to this region with an LOD score of 1.2 (adjusted BMI: LOD 0.5). Two polymorphic DNA markers in LEPR and their haplotypes revealed linkage to unadjusted and adjusted BMI and leptin, and an association with leptin levels was found as well. In addition, the marker D8S1110 showed linkage (LOD 2.8) with unadjusted plasma concentrations of soluble TNFRSF1A. BMI gave a LOD score of 0.6. Moreover, a chromosome 10 q-ter locus, AFM198ZB, showed linkage with adjusted BMI (LOD 3.3). CONCLUSION: These data provide evidence that a human chromosome 1 locus, harboring the LEPR gene, contributes to plasma leptin concentrations, adiposity and body weight in humans affected with this insulin resistant dyslipidemic syndrome. Novel loci on chromosome 8 and 10 qter need further study.
PMID: 11126332
ISSN: n/a
CID: 1564632

Identification of TNFRSF1B as a novel modifier gene in familial combined hyperlipidemia

Geurts, J M; Janssen, R G; van Greevenbroek, M M; van der Kallen, C J; Cantor, R M; Bu, X; Aouizerat, B E; Allayee, H; Rotter, J I; de Bruin, T W
Familial combined hyperlipidemia (FCHL) is the most commonly inherited hyperlipidemia in man, with a frequency of +/-1% in the general population and approximately 10% in myocardial infarction survivors. A genomic scan in 18 Dutch FCHL families resulted in the identification of several loci with evidence for linkage. One of these regions, 1p36.2, contains TNFRSF1B which encodes one of the tumor necrosis factor receptors. An intron 4 polymorphic CA-repeat was used to confirm linkage to FCHL. Linear regression analysis using 79 independent sib pairs showed linkage with a quantitative FCHL discriminant function (P = 0.032), and, borderline, with apolipoprotein B levels (P = 0.064). Furthermore, in a case-control study, association was demonstrated since the overall CA-repeat genotype distribution was significantly different among 40 unrelated FCHL patients and 48 unrelated healthy spouse controls (P = 0.029). This difference was due to a significant increase in allele CA271 homozygotes in the FCHL patients (P = 0.019). Mutation analysis of exon 6 in 73 FCHL family members demonstrated the presence of a single nucleotide polymorphism with two alleles, coding for methionine (196M) and arginine (196R). Complete linkage disequilibrium between CA267, CA271 and CA273 and this polymorphism was detected. In 85 hyperlipidemic FCHL subjects, an association was demonstrated between soluble TNFRSF1B plasma concentrations and the CA271-196M haplotype. In conclusion, TNFRSF1B was found to be associated with susceptibility to FCHL. Our data suggest that an as yet unknown disease-associated mutation, linked to alleles 196M and CA271, plays a role in the pathophysiology of FCHL.
PMID: 10958645
ISSN: 0964-6906
CID: 1564642

Analysis of hABC1 gene 5' end: additional peptide sequence, promoter region, and four polymorphisms

Pullinger, C R; Hakamata, H; Duchateau, P N; Eng, C; Aouizerat, B E; Cho, M H; Fielding, C J; Kane, J P
Evidence linking mutations in ATP-binding-cassette transporter gene 1 (ABC1) to Tangier disease suggests it functions in the active transport of free cholesterol out of cells. Since its mRNA level is regulated in response to cellular cholesterol stores it is of interest to explore its promoter response elements, and to investigate polymorphisms for their contributions to the prevalence of low levels of HDL in the population that promotes premature coronary heart disease. Investigation of the 5' end of the gene by 5' RACE analysis revealed 455 nucleotides additional to published sequences, and predicts another 60 amino acid N-terminal residues, resulting in a 2261-residue protein. Protein sequence analysis predicts a membrane-spanning region and possible signal peptide. The 5' flanking region was located by a Human Research Project BLAST search. This region contains regulatory elements that potentially control ABC1 gene expression. In addition to numerous SP1 binding sites there are four putative sterol regulatory elements (SREs). Our studies uncovered three single nucleotide substitution polymorphisms, one in the promoter region and two in the 5' untranslated region (5'UTR), plus an insertion/deletion polymorphism.
PMID: 10799318
ISSN: 0006-291x
CID: 1564652

Contribution of the hepatic lipase gene to the atherogenic lipoprotein phenotype in familial combined hyperlipidemia

Allayee, H; Dominguez, K M; Aouizerat, B E; Krauss, R M; Rotter, J I; Lu, J; Cantor, R M; de Bruin, T W; Lusis, A J
Familial combined hyperlipidemia (FCH) is a common genetic lipid disorder with a frequency of 1-2% in the population. In addition to the hypercholesterolemia and/or hypertriglyceridemia that affected individuals exhibit, small, dense LDL particles and decreased HDL-cholesterol levels are traits frequently associated with FCH. Recently, we reported that families with FCH and families enriched for coronary artery disease (CAD) share genetic determinants for the atherogenic lipoprotein phenotype (ALP), a profile presenting with small, dense LDL particles, decreased HDL-cholesterol levels, and increased triglyceride levels. Other studies in normolipidemic populations have shown that the hepatic lipase (HL) gene is linked to HDL-cholesterol levels and that a polymorphism within the HL promoter (-514C-->T) is associated with increased HDL-cholesterol levels as well as larger, more buoyant LDL particles. In the present study, we tested whether the HL gene locus also contributes to ALP in a series of Dutch FCH families using nonparametric sibpair linkage analysis and association analysis. Evidence for linkage of LDL particle size (P < 0.019), HDL-cholesterol (P < 0.003), and triglyceride levels (P < 0.026) to the HL gene locus was observed. A genome scan in a subset of these families exhibited evidence for linkage of PPD (LOD = 2.2) and HDL-cholesterol levels (LOD = 1.2) to the HL gene locus as well. The -514C-->T promoter polymorphism was significantly associated (P < 0.0001) with higher HDL-cholesterol levels in the unrelated males of this population, but not in unrelated females. No association was observed between the polymorphism and LDL particle size or triglyceride levels. Our results provide support that ALP is a multigenic trait and suggest that the relationship between small, dense LDL particles, HDL-cholesterol, and triglyceride levels in FCH families is due, in part, to common genetic factors.
PMID: 10681408
ISSN: 0022-2275
CID: 1564662

The hepatic lipase gene locus is linked to LDL particle size and HDL-cholesterol levels in familial combined hyperlipidemia [Meeting Abstract]

Allayee, H; Dominguez, KM; Aouizerat, BE; Krauss, RM; Rotter, JI; Lu, JY; Cantor, RM; de Bruin, TWA; Lusis, AJ
ISI:000083417101325
ISSN: 0009-7322
CID: 1565032

Linkage of a candidate gene locus to familial combined hyperlipidemia: lecithin:cholesterol acyltransferase on 16q

Aouizerat, B E; Allayee, H; Cantor, R M; Dallinga-Thie, G M; Lanning, C D; de Bruin, T W; Lusis, A J; Rotter, J I
Familial combined hyperlipidemia (FCHL) is a common lipid disorder characterized by elevated levels of plasma cholesterol and triglycerides that is present in 10% to 20% of patients with premature coronary artery disease. To study the pathophysiological basis and genetics of FCHL, we previously reported recruitment of 18 large families. We now report linkage studies of 14 candidate genes selected for their potential involvement in the aspects of lipid and lipoprotein metabolism that are altered in FCHL. We used highly polymorphic markers linked to the candidate genes, and these markers were analyzed using several complementary, nonparametric statistical allele-sharing linkage methodologies. This current sample has been extended over the one in which we identified an association with the apolipoprotein (apo) AI-CIII-AIV gene cluster. We observed evidence for linkage of this region and FCHL (P<0.001), providing additional support for its involvement in FCHL. We also identified a new locus showing significant evidence of linkage to the disorder: the lecithin:cholesterol acyltransferase (LCAT) locus (P<0.0006) on chromosome 16. In addition, analysis of the manganese superoxide dismutase locus on chromosome 6 revealed a suggestive linkage result in this sample (P<0.006). Quantitative traits related to FCHL also provided some evidence of linkage to these regions. No evidence of linkage to the lipoprotein lipase gene, the microsomal triglyceride transfer protein gene, or several other genes involved in lipid metabolism was observed. The data suggest that the lecithin:cholesterol acyltransferase and apolipoprotein AI-CIII-AIV loci may act as modifying genes contributing to the expression of FCHL.
PMID: 10559018
ISSN: 1079-5642
CID: 1564672

A genome scan for familial combined hyperlipidemia reveals evidence of linkage with a locus on chromosome 11

Aouizerat, B E; Allayee, H; Cantor, R M; Davis, R C; Lanning, C D; Wen, P Z; Dallinga-Thie, G M; de Bruin, T W; Rotter, J I; Lusis, A J
Familial combined hyperlipidemia (FCHL) is a common familial lipid disorder characterized by a variable pattern of elevated levels of plasma cholesterol and/or triglycerides. It is present in 10%-20% of patients with premature coronary heart disease. The genetic etiology of the disease, including the number of genes involved and the magnitude of their effects, is unknown. Using a subset of 35 Dutch families ascertained for FCHL, we screened the genome, with a panel of 399 genetic markers, for chromosomal regions linked to genes contributing to FCHL. The results were analyzed by use of parametric-linkage methods in a two-stage study design. Four loci, on chromosomes 2p, 11p, 16q, and 19q, exhibited suggestive evidence for linkage with FCHL (LOD scores of 1.3-2.6). Markers within each of these regions were then examined in the original sample and in additional Dutch families with FCHL. The locus on chromosome 2 failed to show evidence for linkage, and the loci on chromosome 16q and 19q yielded only equivocal or suggestive evidence for linkage. However, one locus, near marker D11S1324 on the short arm of human chromosome 11, continued to show evidence for linkage with FCHL, in the second stage of this design. This region does not contain any strong candidate genes. These results provide evidence for a candidate chromosomal region for FCHL and support the concept that FCHL is complex and heterogeneous.
PMCID:1377938
PMID: 10417282
ISSN: 0002-9297
CID: 1564682