Searched for: school:SOM
Department/Unit:Cell Biology
PGRN protects against colitis progression in mice in an IL-10 and TNFR2 dependent manner
Wei, Fanhua; Zhang, Yuying; Jian, Jinlong; Mundra, Jyoti Joshi; Tian, Qingyun; Lin, Jiqiang; Lafaille, Juan Jose; Tang, Wei; Zhao, Weiming; Yu, Xiuping; Liu, Chuan-Ju
This study was aimed to determine the role and regulation of progranulin (PGRN) in the pathogenesis of inflammatory bowel diseases (IBD). Dextran sulfate sodium (DSS)-, picrylsulfonic acid (TNBS)-induced, bone marrow chimera and CD4+CD45Rb(hi) T cell transfer colitis model were established and analyzed in wild-type and several genetically-modified mice, including PGRN, IL-10 and TNFR2 deficient mice. Elevated levels of PGRN were found in colitis samples from human IBD patients and mouse colitis models in comparison to the corresponding controls. PGRN-deficient mice became highly susceptible to DSS- and TNBS-induced colitis, whereas recombinant PGRN ameliorated the pathology and reduced the histological score in both DSS and TNBS colitis models. In addition, hematopoietic-derived PGRN was critical for protection against DSS-induced colitis, and lack of PGRN signaling in CD4+ T cells also exacerbated experimental colitis. PGRN-mediated protective effect in colitis was compromised in the absence of IL-10 signaling. In addition, PGRN's effect was also largely lost in the TNFR2-deficient colitis model. Collectively, these findings not only provide the new insight into PGRN's anti-inflammatory action in vivo, but may also present PGRN and its derivatives as novel biological agent for treating IBD.
PMCID:4228332
PMID: 25387791
ISSN: 2045-2322
CID: 1345892
Allosteric communication in the dynein motor domain
Bhabha, Gira; Cheng, Hui-Chun; Zhang, Nan; Moeller, Arne; Liao, Maofu; Speir, Jeffrey A; Cheng, Yifan; Vale, Ronald D
Dyneins power microtubule motility using ring-shaped, AAA-containing motor domains. Here, we report X-ray and electron microscopy (EM) structures of yeast dynein bound to different ATP analogs, which collectively provide insight into the roles of dynein's two major ATPase sites, AAA1 and AAA3, in the conformational change mechanism. ATP binding to AAA1 triggers a cascade of conformational changes that propagate to all six AAA domains and cause a large movement of the "linker," dynein's mechanical element. In contrast to the role of AAA1 in driving motility, nucleotide transitions in AAA3 gate the transmission of conformational changes between AAA1 and the linker, suggesting that AAA3 acts as a regulatory switch. Further structural and mutational studies also uncover a role for the linker in regulating the catalytic cycle of AAA1. Together, these results reveal how dynein's two major ATP-binding sites initiate and modulate conformational changes in the motor domain during motility.
PMCID:4269335
PMID: 25417161
ISSN: 1097-4172
CID: 2291552
Disease Modeling and Phenotypic Drug Screening for Diabetic Cardiomyopathy using Human Induced Pluripotent Stem Cells
Drawnel, Faye M; Boccardo, Stefano; Prummer, Michael; Delobel, Frederic; Graff, Alexandra; Weber, Michael; Gerard, Regine; Badi, Laura; Kam-Thong, Tony; Bu, Lei; Jiang, Xin; Hoflack, Jean-Christophe; Kiialainen, Anna; Jeworutzki, Elena; Aoyama, Natsuyo; Carlson, Coby; Burcin, Mark; Gromo, Gianni; Boehringer, Markus; Stahlberg, Henning; Hall, Benjamin J; Magnone, Maria Chiara; Kolaja, Kyle; Chien, Kenneth R; Bailly, Jacques; Iacone, Roberto
Diabetic cardiomyopathy is a complication of type 2 diabetes, with known contributions of lifestyle and genetics. We develop environmentally and genetically driven in vitro models of the condition using human-induced-pluripotent-stem-cell-derived cardiomyocytes. First, we mimic diabetic clinical chemistry to induce a phenotypic surrogate of diabetic cardiomyopathy, observing structural and functional disarray. Next, we consider genetic effects by deriving cardiomyocytes from two diabetic patients with variable disease progression. The cardiomyopathic phenotype is recapitulated in the patient-specific cells basally, with a severity dependent on their original clinical status. These models are incorporated into successive levels of a screening platform, identifying drugs that preserve cardiomyocyte phenotype in vitro during diabetic stress. In this work, we present a patient-specific induced pluripotent stem cell (iPSC) model of a complex metabolic condition, showing the power of this technique for discovery and testing of therapeutic strategies for a disease with ever-increasing clinical significance.
PMID: 25437537
ISSN: 2211-1247
CID: 1369942
Positive feedback between golgi membranes, microtubules and ER-exit sites directs golgi de novo biogenesis
Ronchi, Paolo; Tischer, Christian; Acehan, Devrim; Pepperkok, Rainer
The Golgi complex is the central organelle of the secretory pathway. It undergoes dynamic changes during the cell cycle, but how it acquires and maintains its complex structure is unclear. To address this question we have used laser nanosurgery to deplete cells of the Golgi complex and monitored its biogenesis by quantitative time-lapse microscopy and correlative electron microscopy. After Golgi depletion, ER export is inhibited and the number of ER-exit sites (ERES) is reduced and does not increase for several hours. Occasional fusion of small post-ER carriers to form the first larger structures triggers a rapid and drastic growth of Golgi precursors, due to the capacity of these structures to attract more carriers via microtubule nucleation and to stimulate ERES biogenesis. Increasing the chances of post-ER carrier fusion close to ERES by depolymerizing microtubules results in the acceleration of Golgi and ERES biogenesis. Altogether, our results propose a self-organizing principle of the early secretory pathway that integrates Golgi biogenesis, ERES biogenesis and the organization of the microtubule network by positive feedback loops.
PMID: 25189616
ISSN: 0021-9533
CID: 1181022
Super-resolution imaging reveals that loss of the C-terminus of Connexin43 limits microtubule plus-end capture and NaV1.5 localization at the intercalated disc
Agullo-Pascual, Esperanza; Lin, Xianming; Leo-Macias, Alejandra; Zhang, Mingliang; Liang, Feng-Xia; Li, Zhen; Pfenniger, Anna; Lubkemeier, Indra; Keegan, Sarah; Fenyo, David; Willecke, Klaus; Rothenberg, Eli; Delmar, Mario
AIMS: It is well-known that connexin43 (Cx43) forms gap junctions. We recently showed that Cx43 is also part of a protein interacting network that regulates excitability. Cardiac-specific truncation of Cx43 C-terminus (mutant "Cx43D378stop") led to lethal arrhythmias. Cx43D378stop localized to the intercalated disc (ID); cell-cell coupling was normal, but there was significant sodium current (INa) loss. We proposed that the microtubule plus-end is at the crux of the Cx43-INa relation. Yet, specific localization of relevant molecular players was prevented due to the resolution limit of fluorescence microscopy. Here, we use nanoscale imaging to establish: a) the morphology of clusters formed by the microtubule plus-end tracking protein "end binding 1" (EB1), b) their position, and that of sodium channel alpha-subunit NaV1.5, relative to N-cadherin rich sites, c) the role of Cx43 C-terminus on the above-mentioned parameters and on the location-specific function of INa. METHODS AND RESULTS: Super-resolution fluorescence localization microscopy in murine adult cardiomyocytes revealed EB1 and NaV1.5 as distinct clusters preferentially localized to N-cadherin-rich sites. Extent of co-localization decreased in Cx43D378stop cells. Macropatch and scanning patch clamp showed reduced INa exclusively at cell end, without changes in unitary conductance. Experiments in Cx43-modified HL1 cells confirmed the relation between Cx43, INa and microtubules. CONCLUSIONS: NaV1.5 and EB1 localization at cell end is Cx43-dependent. Cx43 is part of a molecular complex that determines capture of the microtubule plus-end at the ID, facilitating cargo delivery. These observations link excitability and electrical coupling through a common molecular mechanism.
PMCID:4296112
PMID: 25139742
ISSN: 0008-6363
CID: 1142382
Interleukin-17 enhances immunosuppression by mesenchymal stem cells
Han, X; Yang, Q; Lin, L; Xu, C; Zheng, C; Chen, X; Han, Y; Li, M; Cao, W; Cao, K; Chen, Q; Xu, G; Zhang, Y; Zhang, J; Schneider, R J; Qian, Y; Wang, Y; Brewer, G; Shi, Y
IL-17 is one of the most potent and most actively investigated proinflammatory cytokines. In this study, we examined the effect of IL-17 on mesenchymal stem cells (MSCs) under the influence of inflammatory cytokines. Ironically, IL-17 dramatically enhanced the immunosuppressive effect of MSCs induced by IFNgamma and TNFalpha, revealing a novel role of IL-17 in immunosuppression. Interestingly, we found that this action of IL-17 was dependent on the promoted expression of a key immune suppressive molecule, inducible nitric oxide synthase (iNOS), in MSCs. In a concanavalin A (ConA)-induced hepatitis mouse model, we found that IL-17 also enhanced the in vivo immunosuppressive effect of MSCs in an iNOS-dependent manner. Moreover, this promoting effect of IL-17 was found to be exerted through enhancing mRNA stability by modulating the protein level of ARE/poly(U)-binding/degradation factor 1 (AUF1), a well-known factor that promotes mRNA decay. In auf1(-/-) MSCs, IFNgamma and TNFalpha could induce maximal immunosuppressive effect, both in vitro and in vivo, without the need for IL-17. Thus, our studies demonstrated that in the presence of MSCs, IL-17 promotes immunosuppression.
PMCID:4211372
PMID: 25034782
ISSN: 1350-9047
CID: 1298722
Molecular basis for ebolavirus VP35 suppression of human dendritic cell maturation
Yen, Benjamin; Mulder, Lubbertus C F; Martinez, Osvaldo; Basler, Christopher F
Zaire ebolavirus (EBOV) VP35 is a double-stranded RNA (dsRNA)-binding protein that inhibits RIG-I signaling and alpha/beta interferon (IFN-alpha/beta) responses by both dsRNA-binding-dependent and -independent mechanisms. VP35 also suppresses dendritic cell (DC) maturation. Here, we define the pathways and mechanisms through which VP35 impairs DC maturation. Wild-type VP35 (VP35-WT) and two well-characterized VP35 mutants (F239A and R322A) that independently ablate dsRNA binding and RIG-I inhibition were delivered to primary human monocyte-derived DCs (MDDCs) using a lentivirus-based expression system. VP35-WT suppressed not only IFN-alpha/beta but also proinflammatory responses following stimulation of MDDCs with activators of RIG-I-like receptor (RLR) signaling, including RIG-I activators such as Sendai virus (SeV) or 5'-triphosphate RNA, or MDA5 activators such as encephalomyocarditis virus (EMCV) or poly(I . C). The F239A and R322A mutants exhibited greatly reduced suppression of IFN-alpha/beta and proinflammatory cytokine production following treatment of DCs with RLR agonists. VP35-WT also blocked the upregulation of DC maturation markers and the stimulation of allogeneic T cell responses upon SeV infection, whereas the mutants did not. In contrast to the RLR activators, VP35-WT and the VP35 mutants impaired IFN-beta production induced by Toll-like receptor 3 (TLR3) or TLR4 agonists but failed to inhibit proinflammatory cytokine production induced by TLR2, TLR3, or TLR4 agonists. Furthermore, VP35 did not prevent lipopolysaccharide (LPS)-induced upregulation of surface markers of MDDC maturation and did not prevent LPS-triggered allogeneic T cell stimulation. Therefore, VP35 is a general antagonist of DC responses to RLR activation. However, TLR agonists can circumvent many of the inhibitory effects of VP35. Therefore, it may be possible to counteract EBOV immune evasion by using treatments that bypass the VP35-imposed block to DC maturation. IMPORTANCE: The VP35 protein, which is an inhibitor of RIG-I signaling and alpha/beta interferon (IFN-alpha/beta) responses, has been implicated as an EBOV-encoded factor that contributes to suppression of dendritic cell (DC) function. We used wild-type VP35 and previously characterized VP35 mutants to clarify VP35-DC interactions. Our data demonstrate that VP35 is a general inhibitor of RIG-I-like receptor (RLR) signaling that blocks not only RIG-I- but also MDA5-mediated induction of IFN-alpha/beta responses. Furthermore, in DCs, VP35 also impairs the RLR-mediated induction of proinflammatory cytokine production, upregulation of costimulatory markers, and activation of T cells. These inhibitory activities require VP35 dsRNA-binding activity, an activity previously correlated to VP35 RIG-I inhibitory function. In contrast, while VP35 can inhibit IFN-alpha/beta production induced by TLR3 or TLR4 agonists, this occurs in a dsRNA-independent fashion, and VP35 does not inhibit TLR-mediated expression of proinflammatory cytokines. These data suggest strategies to overcome VP35 inhibition of DC function.
PMCID:4248944
PMID: 25142601
ISSN: 1098-5514
CID: 2286092
Redox regulation of botulinum neurotoxin toxicity: therapeutic implications
Montal, Mauricio
Botulinum neurotoxin causes botulism, and the only effective antidote is the antitoxin. Botulinum neurotoxins are disulfide linked di-chain proteins encompassing a light chain Zn2+-protease that is translocated by a heavy chain channel from the synaptic vesicle lumen into the neuronal cytosol where it acts. Protease release from the channel is required for toxicity. The Thioredoxin Reductase-Thioredoxin system cleaves the interchain disulfide, and its inhibition prevents neurotoxicity, and may provide novel strategies for chemoprophylaxis and therapy.
PMCID:4253726
PMID: 25242227
ISSN: 1471-4914
CID: 1259142
Independent anti-angiogenic capacities of coagulation factors X and Xa
Lange, Soledad; Gonzalez, Ibeth; Pinto, Mauricio P; Arce, Maximiliano; Valenzuela, Rodrigo; Aranda, Evelyn; Elliot, Matias; Alvarez, Marjorie; Henriquez, Soledad; Velasquez, Ethel V; Orge, Felipe; Oliva, Barbara; Gonzalez, Pamela; Villalon, Manuel; Cautivo, Kelly M; Kalergis, Alexis M; Pereira, Karla; Mendoza, Camila; Saez, Claudia; Kato, Sumie; Cuello, Mauricio A; Parborell, Fernanda; Irusta, Griselda; Palma, Veronica; Allende, Miguel L; Owen, Gareth I
Knockout models have shown that the coagulation system has a role in vascular development and angiogenesis. Herein, we report for the first time that zymogen FX and its active form (FXa) possess anti-angiogenic properties. Both the recombinant FX and FXa inhibit angiogenesis in vitro using endothelial EA.hy926 and human umbilical cord vascular endothelial cells (HUVEC). This effect is dependent on the Gla domain of FX. We demonstrate that FX and FXa use different mechanisms: the use of Rivaroxaban (RX) a specific inhibitor of FXa attenuated its anti-angiogenic properties but did not modify the anti-angiogenic effect of FX. Furthermore, only the anti-angiogenic activity of FXa is PAR-1dependent. Using in vivo models, we show that FX and FXa are anti-angiogenic in the zebrafish intersegmental vasculature (ISV) formation and in the chick embryo chorioallantoic membrane (CAM) assays. Our results provide further evidence for the non-hemostatic functions of FX and FXa and demonstrate for the first time a biological role for the zymogen FX.
PMID: 24615682
ISSN: 1097-4652
CID: 2559392
Low Vitamin D levels predict clinical features of schizophrenia
Cieslak, Kristina; Feingold, Jordyn; Antonius, Daniel; Walsh-Messinger, Julie; Dracxler, Roberta; Rosedale, Mary; Aujero, Nicole; Keefe, David; Goetz, Deborah; Goetz, Raymond; Malaspina, Dolores
Vitamin D plays crucial roles in neuroprotection and neurodevelopment, and low levels are commonly associated with schizophrenia. We considered if the association was spurious or causal by examining the association of Vitamin D with Leukocyte Telomere Length (LTL), a marker of cellular aging. Vitamin D levels in 22 well-characterized schizophrenia cases were examined with respect to symptoms, cognition, and functioning. LTL was assessed using quantitative polymerase chain reaction (qPCR). The results showed that 91% (20) had deficient or insufficient Vitamin D levels, which were associated with excitement and grandiosity, social anhedonia, and poverty of speech. Sex-specific analyses showed strong associations of hypovitamintosis D to negative symptoms and decreased premorbid adjustment in males, and to lesser hallucinations and emotional withdrawal, but increased anti-social aggression in females. In females LTL was furthermore associated with Vitamin D levels. This study demonstrates a relationship of low vitamin D levels with increased cellular aging in females. It is also the first study to demonstrate potential sex-specific profiles among schizophrenia cases with hypovitaminosis.
PMCID:4252834
PMID: 25311777
ISSN: 1573-2509
CID: 1310002