Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14178


Nanoscale Visualization of Functional Adhesion/Excitability Nodes at the Intercalated Disc. [Meeting Abstract]

Leo-Macias, Alejandra; Agullo-Pascual, Esperanza; Sanchez-Alonso, Jose L; Keegan, Sarah; Lin, Xianming; Liang, Feng-Xia; Korchev, Yuri E; Gorelik, Julia; Fenyo, David; Rothenberg, Eli; Delmar, Mario
ISI:000365188500026
ISSN: 1540-7748
CID: 1873012

TELOMERE ATTRITION IN GERMINAL VESICLE ARRESTED HUMAN OOCYTES. [Meeting Abstract]

Kalmbach, K; Keefe, DL
ISI:000380018900532
ISSN: 1556-5653
CID: 2220362

Stimulation of the Adenosine A2A Receptor (A2AR) Regulates the Expression of Netrin-1 (Ntn1) and Its Receptors (Unc5b, DCC) and Inhibits Wear Particle-Induced Inflammatory Osteolysis in a Model of Joint Prosthesis Loosening [Meeting Abstract]

Mediero, Aranzazu; Ramkhelawon, Bhama; Perez-Aso, Miguel; Moore, Kathryn; Cronstein, Bruce
ISI:000370860203615
ISSN: 2326-5205
CID: 2029612

Sex- and tissue-specific functions of Drosophila doublesex transcription factor target genes

Clough, Emily; Jimenez, Erin; Kim, Yoo-Ah; Whitworth, Cale; Neville, Megan C; Hempel, Leonie U; Pavlou, Hania J; Chen, Zhen-Xia; Sturgill, David; Dale, Ryan K; Smith, Harold E; Przytycka, Teresa M; Goodwin, Stephen F; Van Doren, Mark; Oliver, Brian
Primary sex-determination "switches" evolve rapidly, but Doublesex (DSX)-related transcription factors (DMRTs) act downstream of these switches to control sexual development in most animal species. Drosophila dsx encodes female- and male-specific isoforms (DSX(F) and DSX(M)), but little is known about how dsx controls sexual development, whether DSX(F) and DSX(M) bind different targets, or how DSX proteins direct different outcomes in diverse tissues. We undertook genome-wide analyses to identify DSX targets using in vivo occupancy, binding site prediction, and evolutionary conservation. We find that DSX(F) and DSX(M) bind thousands of the same targets in multiple tissues in both sexes, yet these targets have sex- and tissue-specific functions. Interestingly, DSX targets show considerable overlap with targets identified for mouse DMRT1. DSX targets include transcription factors and signaling pathway components providing for direct and indirect regulation of sex-biased expression.
PMCID:4275658
PMID: 25535918
ISSN: 1878-1551
CID: 2206492

High-resolution sequencing and modeling identifies distinct dynamic RNA regulatory strategies

Rabani, Michal; Raychowdhury, Raktima; Jovanovic, Marko; Rooney, Michael; Stumpo, Deborah J; Pauli, Andrea; Hacohen, Nir; Schier, Alexander F; Blackshear, Perry J; Friedman, Nir; Amit, Ido; Regev, Aviv
Cells control dynamic transitions in transcript levels by regulating transcription, processing, and/or degradation through an integrated regulatory strategy. Here, we combine RNA metabolic labeling, rRNA-depleted RNA-seq, and DRiLL, a novel computational framework, to quantify the level; editing sites; and transcription, processing, and degradation rates of each transcript at a splice junction resolution during the LPS response of mouse dendritic cells. Four key regulatory strategies, dominated by RNA transcription changes, generate most temporal gene expression patterns. Noncanonical strategies that also employ dynamic posttranscriptional regulation control only a minority of genes, but provide unique signal processing features. We validate Tristetraprolin (TTP) as a major regulator of RNA degradation in one noncanonical strategy. Applying DRiLL to the regulation of noncoding RNAs and to zebrafish embryogenesis demonstrates its broad utility. Our study provides a new quantitative approach to discover transcriptional and posttranscriptional events that control dynamic changes in transcript levels using RNA sequencing data.
PMCID:4272607
PMID: 25497548
ISSN: 0092-8674
CID: 1410692

Escargot maintains stemness and suppresses differentiation in Drosophila intestinal stem cells

Korzelius, Jerome; Naumann, Svenja K; Loza-Coll, Mariano A; Chan, Jessica Sk; Dutta, Devanjali; Oberheim, Jessica; Gläßer, Christine; Southall, Tony D; Brand, Andrea H; Jones, D Leanne; Edgar, Bruce A
Snail family transcription factors are expressed in various stem cell types, but their function in maintaining stem cell identity is unclear. In the adult Drosophila midgut, the Snail homolog Esg is expressed in intestinal stem cells (ISCs) and their transient undifferentiated daughters, termed enteroblasts (EB). We demonstrate here that loss of esg in these progenitor cells causes their rapid differentiation into enterocytes (EC) or entero-endocrine cells (EE). Conversely, forced expression of Esg in intestinal progenitor cells blocks differentiation, locking ISCs in a stem cell state. Cell type-specific transcriptome analysis combined with Dam-ID binding studies identified Esg as a major repressor of differentiation genes in stem and progenitor cells. One critical target of Esg was found to be the POU-domain transcription factor, Pdm1, which is normally expressed specifically in differentiated ECs. Ectopic expression of Pdm1 in progenitor cells was sufficient to drive their differentiation into ECs. Hence, Esg is a critical stem cell determinant that maintains stemness by repressing differentiation-promoting factors, such as Pdm1.
PMID: 25298397
ISSN: 1460-2075
CID: 5193272

Regulation of Drosophila intestinal stem cell maintenance and differentiation by the transcription factor Escargot

Loza-Coll, Mariano A; Southall, Tony D; Sandall, Sharsti L; Brand, Andrea H; Jones, D Leanne
Tissue stem cells divide to self-renew and generate differentiated cells to maintain homeostasis. Although influenced by both intrinsic and extrinsic factors, the genetic mechanisms coordinating the decision between self-renewal and initiation of differentiation remain poorly understood. The escargot (esg) gene encodes a transcription factor that is expressed in stem cells in multiple tissues in Drosophila melanogaster, including intestinal stem cells (ISCs). Here, we demonstrate that Esg plays a pivotal role in intestinal homeostasis, maintaining the stem cell pool while influencing fate decisions through modulation of Notch activity. Loss of esg induced ISC differentiation, a decline in Notch activity in daughter enteroblasts (EB), and an increase in differentiated enteroendocrine (EE) cells. Amun, an inhibitor of Notch in other systems, was identified as a target of Esg in the intestine. Decreased expression of esg resulted in upregulation of Amun, while downregulation of Amun rescued the ectopic EE cell phenotype resulting from loss of esg. Thus, our findings provide a framework for further comparative studies addressing the conserved roles of Snail factors in coordinating self-renewal and differentiation of stem cells across tissues and species.
PMID: 25433031
ISSN: 1460-2075
CID: 5193282

Label-free imaging of Schwann cell myelination by third harmonic generation microscopy

Lim, Hyungsik; Sharoukhov, Denis; Kassim, Imran; Zhang, Yanqing; Salzer, James L; Melendez-Vasquez, Carmen V
Understanding the dynamic axon-glial cell interaction underlying myelination is hampered by the lack of suitable imaging techniques. Here we demonstrate third harmonic generation microscopy (THGM) for label-free imaging of myelinating Schwann cells in live culture and ex vivo and in vivo tissue. A 3D structure was acquired for a variety of compact and noncompact myelin domains, including juxtaparanodes, Schmidt-Lanterman incisures, and Cajal bands. Other subcellular features of Schwann cells that escape traditional optical microscopies were also visualized. We tested THGM for morphometry of compact myelin. Unlike current methods based on electron microscopy, g-ratio could be determined along an extended length of myelinated fiber in the physiological condition. The precision of THGM-based g-ratio estimation was corroborated in mouse models of hypomyelination. Finally, we demonstrated the feasibility of THGM to monitor morphological changes of myelin during postnatal development and degeneration. The outstanding capabilities of THGM may be useful for elucidation of the mechanism of myelin formation and pathogenesis.
PMCID:4273419
PMID: 25453108
ISSN: 0027-8424
CID: 1370562

Activation of Toll-like Receptor-2 by Endogenous Matrix Metalloproteinase-2 Modulates Dendritic-Cell-Mediated Inflammatory Responses

Godefroy, Emmanuelle; Gallois, Anne; Idoyaga, Juliana; Merad, Miriam; Tung, Navpreet; Monu, Ngozi; Saenger, Yvonne; Fu, Yichun; Ravindran, Rajesh; Pulendran, Bali; Jotereau, Francine; Trombetta, Sergio; Bhardwaj, Nina
Matrix metalloproteinase-2 (MMP-2) is involved in several physiological mechanisms, including wound healing and tumor progression. We show that MMP-2 directly stimulates dendritic cells (DCs) to both upregulate OX40L on the cell surface and secrete inflammatory cytokines. The mechanism underlying DC activation includes physical association with Toll-like receptor-2 (TLR2), leading to NF-kappaB activation, OX40L upregulation on DCs, and ensuing TH2 differentiation. Significantly, MMP-2 polarizes T cells toward type 2 responses in vivo, in a TLR2-dependent manner. MMP-2-dependent type 2 polarization may represent a key immune regulatory mechanism for protection against a broad array of disorders, such as inflammatory, infectious, and autoimmune diseases, which can be hijacked by tumors to evade immunity.
PMCID:4336179
PMID: 25466255
ISSN: 2211-1247
CID: 1437072

Telomere Elongation and Naive Pluripotent Stem Cells Achieved from Telomerase Haplo-Insufficient Cells by Somatic Cell Nuclear Transfer

Sung, Li-Ying; Chang, Wei-Fang; Zhang, Qian; Liu, Chia-Chia; Liou, Jun-Yang; Chang, Chia-Chun; Ou-Yang, Huan; Guo, Renpeng; Fu, Haifeng; Cheng, Winston T K; Ding, Shih-Torng; Chen, Chuan-Mu; Okuka, Maja; Keefe, David L; Chen, Y Eugene; Liu, Lin; Xu, Jie
Haplo-insufficiency of telomerase genes in humans leads to telomere syndromes such as dyskeratosis congenital and idiopathic pulmonary fibrosis. Generation of pluripotent stem cells from telomerase haplo-insufficient donor cells would provide unique opportunities toward the realization of patient-specific stem cell therapies. Recently, pluripotent human embryonic stem cells (ntESCs) have been efficiently achieved by somatic cell nuclear transfer (SCNT). We tested the hypothesis that SCNT could effectively elongate shortening telomeres of telomerase haplo-insufficient cells in the ntESCs with relevant mouse models. Indeed, telomeres of telomerase haplo-insufficient (Terc+/-) mouse cells are elongated in ntESCs. Moreover, ntESCs derived from Terc+/- cells exhibit naive pluripotency as evidenced by generation of Terc+/- ntESC clone pups by tetraploid embryo complementation, the most stringent test of naive pluripotency. These data suggest that SCNT could offer a powerful tool to reprogram telomeres and to discover the factors for robust restoration of telomeres and pluripotency of telomerase haplo-insufficient somatic cells.
PMCID:4268138
PMID: 25464850
ISSN: 2211-1247
CID: 1370912